Calculate the limit cos(x)/sin(x) when x approaches 0

  • #1
Lambda96
204
72
Homework Statement
Calculate ##\displaystyle{\lim_{x \to 0}} \frac{\cos(x)}{\sin(x)}##
Relevant Equations
none
Hi,

I need to check whether the limit of the following function exists or not
Bildschirmfoto 2024-01-09 um 19.42.37 Kopie.png
I have now proceeded as follows to look at the right-sided and left-sided limit i.e. ##\displaystyle{\lim_{x \to 0^{+}}}## and ##\displaystyle{\lim_{x \to 0^{-}}}##

To do this, I drew up a list in which I move from 1 closer and closer to 0 and for the left-hand side from -1 towards 0 and got the following:

Bildschirmfoto 2024-01-10 um 20.27.22.png


As you can see, the function tends from the right towards ##\infty## and from the left towards ##- \infty## As the two values are therefore not equal, the function has no limit at the point ##x=0##

My question, can I prove it this way, or is there a way to prove it more precisely mathematically?
 

Attachments

  • Bildschirmfoto 2024-01-09 um 19.42.37 Kopie.png
    Bildschirmfoto 2024-01-09 um 19.42.37 Kopie.png
    7 KB · Views: 37
Physics news on Phys.org
  • #2
Lambda96 said:
Homework Statement: Calculate ##\displaystyle{\lim_{x \to 0}} \frac{\cos(x)}{\sin(x)}##
Relevant Equations: none

Hi,

I need to check whether the limit of the following function exists or not
View attachment 338389I have now proceeded as follows to look at the right-sided and left-sided limit i.e. ##\displaystyle{\lim_{x \to 0^{+}}}## and ##\displaystyle{\lim_{x \to 0^{-}}}##

To do this, I drew up a list in which I move from 1 closer and closer to 0 and for the left-hand side from -1 towards 0 and got the following:

View attachment 338390

As you can see, the function tends from the right towards ##\infty## and from the left towards ##- \infty## As the two values are therefore not equal, the function has no limit at the point ##x=0##

My question, can I prove it this way, or is there a way to prove it more precisely mathematically?
If you're asked to prove that the limit exists or doesn't exist, calculating a table of values doesn't do the job. What you would need to do in this case is a sort of modified ##\delta - \epsilon## argument. In this case you would need to show that for any given (large number) M, there is a (small number) ##\delta > 0## such that whenever ##|x - 0| < \delta##, where ##x \ne 0##, then ##|\frac{\cos(x)}{\sin(x)}| > M##. As a side note, ##\frac{\cos(x)}{\sin(x)}= = \cot(x)##.
 
  • Like
Likes MatinSAR and Lambda96
  • #3
Still, it seems you're working on the extended Reals, if ##\mathbb R## with the line on top *. Edit: Then the limit of infinity could exist.

*Sorry, don't know how to Latex it in.
 
Last edited:
  • Like
Likes MatinSAR and Lambda96
  • #4
WWGD said:
Still, it seems you're working on the extended Reals, if ##\mathbb R## with the line on top *. Then the limit exists and it's infinity.

*Sorry, don't know how to Latex it in.
##\overline{\mathbb R}##
 
  • Like
Likes MatinSAR, Lambda96 and WWGD
  • #5
WWGD said:
Still, it seems you're working on the extended Reals, if ##\mathbb R## with the line on top *. Then the limit exists and it's infinity.

*Sorry, don't know how to Latex it in.

That is true for the projectively extended reals. The normal extended reals have two infinities and no limit here.
 
  • Like
Likes Lambda96
  • #6
Office_Shredder said:
That is true for the projectively extended reals. The normal extended reals have two infinities and no limit here.
Yes, not this expression, but either of ## \infty, -\infty ## are possible limits in
##\overline {\mathbb R}##
 
  • Like
Likes Lambda96
  • #7
Thank you Mark44, WWGD, Orodruin and Office_Shredder for your help

I have now proceeded as Mark44 described:

The following applies ##|x-0|< \delta \rightarrow x < \delta## and ##\frac{\cos(x)}{\sin(x)}>M \rightarrow \cot(x)>M##

Then I calculated the following

##\cot(x) > M \qquad | \text{Form reciprocal value}##
##\frac{1}{\cot(x)} < \frac{1}{M} \qquad |\frac{1}{\cot(x)}= \tan(x)##
##\tan(x) < \frac{1}{M} \qquad | \arctan(...)##
##x < \arctan(\frac{1}{M})##

It then follows that for ##\cot(x) > M##, ##\delta## must be chosen as follows ##\delta = \arctan(\frac{1}{M})##
 
  • #8
Lambda96 said:
Calculate ##\displaystyle{\lim_{x \to 0}} \frac{\cos(x)}{\sin(x)}##
You can use Taylor series ...

##cos(x)=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\frac{x^8}{8!}-...##
##sin(x)=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\frac{x^9}{9!}-...##

... and approximate with first members of two series ...
(the same as replacing functions cos(x) and sin(x) with their tangent straight lines for x=0)

##\displaystyle{\lim_{x \to 0}} \frac{\cos(x)}{\sin(x)}
=\displaystyle{\lim_{x \to 0}} \frac{1}{x}##

From the left side ##x \to -0## you can get
##\displaystyle{\lim_{x \to -0}} \frac{1}{x}
=\displaystyle{\lim_{x \to -\infty}} \frac{1}{ \frac{1}{x}}
=\displaystyle{\lim_{x \to -\infty}} x =-\infty##

Also from the right side ##x \to +0## you can get
##\displaystyle{\lim_{x \to +0}} \frac{1}{x}
=\displaystyle{\lim_{x \to +\infty}} \frac{1}{ \frac{1}{x}}
=\displaystyle{\lim_{x \to +\infty}} x =+\infty##

Cotangent function is ##ctg(x)=cot(x)=\frac{\cos(x)}{\sin(x)}##
Wolfram alpha -> https://www.wolframalpha.com/input?i=cos(x)/sin(x)
 
Last edited:
  • Like
Likes Lambda96 and WWGD
  • #9
You can see that [itex]\cos x/\sin x[/itex] is odd, so either the limit is zero or the limit does not exist. The limit is not zero: since [itex]\tan x \to 0[/itex], for each [itex]R > 0[/itex] there exists [itex]\delta > 0[/itex] such that if [itex]0 < |x| < \delta[/itex] then [itex]|\tan x| < R^{-1}[/itex] and [itex]|\cot x| > R[/itex].
 
  • Like
Likes Lambda96, MatinSAR and PeroK
  • #10
I'm not convinced you need an epsilon-delta proof, as long as you can use basic properties of sine and cosine.
$$\lim_{x \to 0} \cos x =1$$$$\lim_{x \to 0}\sin x = 0$$$$0 < x < \pi \ \Rightarrow \ \sin x > 0$$$$-\pi <x<0 \ \Rightarrow \ \sin x < 0$$
 
  • Like
Likes Lambda96, MatinSAR and nuuskur
  • #11
Lambda96 said:
As you can see, the function tends from the right towards ##\infty## and from the left towards ##- \infty## As the two values are therefore not equal, the function has no limit at the point ##x=0##

My question, can I prove it this way, or is there a way to prove it more precisely mathematically?
This is correct. You have shown the limit does not exist.
 
  • Like
Likes Lambda96
  • #12
In the topology of the Extended Reals, the limit as ##\infty## may exist if your expression grows without bound in the positive direction, i.e., it would be in the neighborhood ##(a, \infty]; a>0##. Similar for ##-\infty ## as a limit. That's not the case here, as cotan alternates signs.
https://en.m.wikipedia.org/wiki/Extended_real_number_line
 
  • Like
Likes Lambda96
  • #13
Thank you Bosko, pasmith, PeroK, nuuskur and WWGD for your help 👍👍👍👍👍

Thanks PeroK with the tip to argue that the sine around ##x=0## is asymmetric and therefore the limit ##\displaystyle{\lim_{x \to 0^-}} \frac{\cos(x)}{\sin(x)}=- \infty## and ##\displaystyle{\lim_{x \to 0^+}} \frac{\cos(x)}{\sin(x)}= \infty## and therefore the limit ##\displaystyle{\lim_{x \to 0}} \frac{\cos(x)}{\sin(x)}## does not exist
 
  • Like
Likes nuuskur, WWGD and SammyS

FAQ: Calculate the limit cos(x)/sin(x) when x approaches 0

What is the limit of cos(x)/sin(x) as x approaches 0?

The limit of cos(x)/sin(x) as x approaches 0 does not exist in a conventional sense because sin(x) approaches 0, making the expression undefined. However, using trigonometric identities, we can analyze the behavior around 0.

Can we use L'Hôpital's Rule to find the limit of cos(x)/sin(x) as x approaches 0?

Yes, we can use L'Hôpital's Rule. Since both the numerator and the denominator approach 0 as x approaches 0, we can differentiate the numerator and the denominator. The derivatives are -sin(x) and cos(x), respectively. So, the limit becomes -sin(x)/cos(x) as x approaches 0, which simplifies to 0.

What trigonometric identities can help in calculating the limit of cos(x)/sin(x) as x approaches 0?

We can use the identity cot(x) = cos(x)/sin(x). As x approaches 0, cot(x) approaches infinity because sin(x) approaches 0 and cos(x) approaches 1. Therefore, the limit of cos(x)/sin(x) as x approaches 0 is undefined or can be considered as approaching infinity.

How does the behavior of sin(x) and cos(x) near 0 affect the limit of cos(x)/sin(x)?

As x approaches 0, sin(x) approaches 0 and cos(x) approaches 1. Since cos(x) remains finite and non-zero while sin(x) approaches 0, the ratio cos(x)/sin(x) grows without bound. This implies that the limit does not exist in a finite sense and can be considered as approaching infinity.

What is the significance of the limit cos(x)/sin(x) in trigonometry?

The limit of cos(x)/sin(x) as x approaches 0 is significant because it highlights the behavior of the cotangent function near 0. Understanding this limit helps in analyzing and solving problems involving trigonometric functions and their limits.

Similar threads

Replies
8
Views
1K
Replies
13
Views
1K
Replies
5
Views
960
Replies
10
Views
2K
Replies
2
Views
1K
Replies
6
Views
936
Replies
9
Views
1K
Back
Top