Calculate the magnetic moment of a rotating sphere

In summary, the magnetic moment of a rotating sphere can be calculated by considering the sphere's angular momentum and charge distribution. The formula involves integrating the contributions of infinitesimal charge elements over the volume of the sphere, taking into account the sphere's rotation. The resulting magnetic moment is proportional to the sphere's angular velocity and charge density, reflecting the relationship between rotational motion and magnetic fields in electromagnetic theory.
  • #1
LeoJakob
24
2
Homework Statement
A sphere with radius ##R ## is spatially homogeneously loaded and rotates with constant angular velocity ##\vec{ \omega}## around the ##z ## axis running through the center of the sphere.

Calculate the magnetic moment of the sphere ##\vec m##
Relevant Equations
##\vec{m}=\frac{1}{2} \int \limits_{V} \vec{r}^{\prime} \times \vec{j}\left(\vec{r}^{\prime}\right) d V, \vec{j}(\vec{r}, t)=\rho(\vec{r}, t) \vec{v}(\vec{r}, t), \vec{v}=\vec{\omega} \times \vec{r}##
Ich wäre Ihnen sehr dankbar, wenn Sie sich meine Lösung der folgenden Übung ansehen:

A sphere with radius ##R ## is spatially homogeneously loaded and rotates with constant angular velocity ##\vec{ \omega}## around the ##z ## axis running through the center of the sphere.
Calculate the magnetic moment of the sphere ##\vec m##

First I need to calculate ##\vec{j}(\vec{r}, t)=\rho(\vec{r}, t) \vec{v}(\vec{r}, t)##

I will use spherical coordinates:

(i) I calculated ##\rho (r)=\frac{3 Q}{4 \pi R^{3}} \theta(R-r)## with the total charge ##Q##
(ii)

$$\vec{\omega}=\omega \vec{e}_{z}, \vec{r}=r \vec{e}_{r}$$

$$\vec{v}=\vec{\omega} \times \vec{r}=r \omega\left(\vec{e}_{z} \times \vec{e}_{r}\right)=r \omega \vec{e}_{\phi}$$

$$\vec{j}(\vec{r})=\rho(r) \vec{v}=\rho(r) \vec{\omega} \times \vec{r}=\rho(r) r \omega \vec{e}_{\phi}=j(r) \vec{e}_{\phi} $$

$$\vec{m}=\frac{1}{2} \int \limits_{V} \vec{r}^{\prime} \times \vec{j}\left(\vec{r}^{\prime}\right) d V \\
=\frac{1}{2} \int \limits_{V}\left(r^{\prime} \vec{e}_{r'}\right) \times\left(j\left(r^{\prime}) \vec{e}_{\phi}\right) d V\right. \\
=\frac{1}{2} \int \limits_{V} r^{\prime} j\left(r^{\prime}\right)(\underbrace{\vec{e}_{r'} \times \vec{e}_{\phi}}_{\overrightarrow{e_{z}}}) d V \\
=\frac{1}{2} \int \limits_{0}^{2 \pi} d \phi \int \limits_{0}^{\pi} \sin \theta d \theta \int \limits_{0}^{\infty} r'\left(\frac{3 Q}{4 \pi R^{3}} \theta(R-r')\right) \cdot r^{\prime} \omega\left(r^{\prime}\right)^{2} d r^{\prime} \vec{e}_{z} \\
=\frac{1}{2}(2 \pi)(-2) \frac{3 Q}{4 \pi R^{3}} \int \limits_{0}^{R}\left(r^{\prime}\right)^{4} d r^{\prime} \vec{e}_{z} \\ =-\frac{3}{2} \frac{Q \omega}{R^{3}}\left[\frac{\left(r^{\prime}\right)^{5}}{5}\right]_{0}^{R}\vec{e}_{z} =-\frac{3}{10} Q \omega R^{2} \vec{e}_{z}
$$

The units are correct ##[ A\cdot m^2]##
 
Physics news on Phys.org
  • #2
LeoJakob said:
$$\vec{v}=\vec{\omega} \times \vec{r}=r \omega\left(\vec{e}_{z} \times \vec{e}_{r}\right)=r \omega \vec{e}_{\phi}$$
In spherical coordinates, ##\vec {e}_z \times \vec {e}_r \neq \vec {e}_\phi##, in general.
A sketch will help.

LeoJakob said:
$$\frac{1}{2} \int \limits_{V} r^{\prime} j\left(r^{\prime}\right)(\underbrace{\vec{e}_{r'} \times \vec{e}_{\phi}}_{\overrightarrow{e_{z}}}) d V $$
##\vec {e}_{r'} \times \vec {e}_{\phi} \neq \vec {e}_z##, in general.
 
  • #3
LeoJakob said:
Homework Statement: A sphere with radius ##R ## is spatially homogeneously loaded and rotates with constant angular velocity ##\vec{ \omega}## around the ##z ## axis running through the center of the sphere.
(i) I calculated ##\rho (r)=\frac{3 Q}{4 \pi R^{3}} \theta(R-r)## with the total charge ##Q##
What does "spatially homogeneously loaded" mean? I think it means "has uniform charge density" and that you should have ##\rho = \text{const.}## Besides, your expression does not make sense because it shows a ##\theta## dependence that is not periodic. When ##\theta = 2\pi, 4\pi,\dots##, you should get the same value as when ##\theta=0##.

The way I would do this problem is write ##dq=\rho~dV=\rho~ r^2 dr~\sin\theta d\theta~d\phi## and consider the magnetic moment of a current loop of radius ##r## and current ##dI=\dfrac{dq}{dt}.##

Find the contribution to the magnetic moment of this current loop and add all such contributions over the volume of the sphere.
 
  • #4
kuruman said:
your expression does not make sense because it shows a ##\theta## dependence that is not periodic.
I think the ##\theta## in the expression ##\rho (r)=\frac{3 Q}{4 \pi R^{3}} \theta(R-r)## is meant to represent the Heaviside step function.
 
  • #5
kuruman said:
Besides, your expression does not make sense because it shows a θ dependence that is not periodic.
I'm really sry for that, I meant the heaviside-function and should have wrote ##\vartheta## for the spherical coordinates. I will give you a new calculation in a few minutes
 
  • #6
LeoJakob said:
I'm really sry for that, I meant the heaviside-function and should have wrote ##\vartheta## for the spherical coordinates. I will give you a new calculation in a few minutes
Why do you need the Heaviside function? The volume charge density is ##\rho=\frac{3Q}{4\pi R^3}## as you say. If you integrate over ##r## from 0 to ##R## you implicitly take into consideration that there is no charge in the region ##r>R##.
 
  • #7
TSny said:
In spherical coordinates, ##\vec {e}_z \times \vec {e}_r \neq \vec {e}_\phi##, in general.
A sketch will help.


##\vec {e}_{r'} \times \vec {e}_{\phi} \neq \vec {e}_z##, in general.
But ##\vec {e}_{r'} \times \vec {e}_{\phi} = \vec {e}_{\theta}## is correct?

kuruman said:
Why do you need the Heaviside function? The volume charge density is ##\rho=\frac{3Q}{4\pi R^3}## as you say. If you integrate over ##r## from 0 to ##R## you implicitly take into consideration that there is no charge in the region ##r>R##.
True!
LeoJakob said:
A sphere with radius ##R ## is spatially homogeneously loaded and rotates with constant angular velocity ##\vec{ \omega}## around the ##z ## axis running through the center of the sphere.
Calculate the magnetic moment of the sphere ##\vec m##
magneticMoment.png


First I need to calculate ##\vec{j}(\vec{r}, t)=\rho(\vec{r}, t) \vec{v}(\vec{r}, t)##

Failed attempt:
I tried to use spherical coordinates. Because of the radial symmetrie the magnetic moment will only be dependent on the distance ##r## from the origin. I can set my coordinate system so that the position vector ## \vec r## is on the z-axis. Don't know the next step....

kuruman said:
The way I would do this problem is write ##dq=\rho~dV=\rho~ r^2 dr~\sin\theta d\theta~d\phi## and consider the magnetic moment of a current loop of radius ##r## and current ##dI=\dfrac{dq}{dt}.##
I only know this formula ##\vec{m}=\frac{1}{2} \int \limits_{V} \vec{r}^{\prime} \times \vec{j}\left(\vec{r}^{\prime}\right) d V##. I don’t understand what your idea is: ##j=\frac{I}{S}=\frac{dq}{dt}\cdot \frac{1}{S}=\frac{d(\rho~ r^2 dr~\sin\theta d\theta~d\phi)}{dt}\cdot \frac{1}{S}##

##S## is the cross-sectional area.
 
  • #8
LeoJakob said:
But ##\vec {e}_{r'} \times \vec {e}_{\phi} = \vec {e}_{\theta}## is correct?
Almost. Can you see that the sign is wrong? That is, you should have ##\vec {e}_{r'} \times \vec {e}_{\phi} = -\vec {e}_{\theta}##.

By symmetry, the magnetic moment will be in the ##z##-direction. So, you only need the ##z##-component of ##\vec {e}_{r'} \times \vec {e}_{\phi}##. What is the ##z##-component of ##-\vec{e}_{\theta}## in terms of the angle ##\theta##?

Second, you need to correct your expression for ##\vec{v}##. You wrote correctly that ##\vec v = \vec{\omega} \times \vec r = r \omega \vec e_z \times \vec e_r##. But then you wrote ##\vec e_z \times \vec e_r= \vec e_{\phi}##, which is incorrect. Note that ##\vec e_z## and ##\vec e_r## are not perpendicular to one another. You should get that ##\vec e_z \times \vec e_r## equals some function of ##\theta## times ##\vec e_{\phi}##.

If you make these two corrections in your calculation, I think you will get the correct answer. You will find that the only change will be in the integration over ##\theta##.
 
  • Like
Likes LeoJakob
  • #9
LeoJakob said:
I only know this formula ##\vec{m}=\frac{1}{2} \int \limits_{V} \vec{r}^{\prime} \times \vec{j}\left(\vec{r}^{\prime}\right) d V##. I don’t understand what your idea is: ##j=\frac{I}{S}=\frac{dq}{dt}\cdot \frac{1}{S}=\frac{d(\rho~ r^2 dr~\sin\theta d\theta~d\phi)}{dt}\cdot \frac{1}{S}##

##S## is the cross-sectional area.
I will show you my solution once you solve this problem the way you understand it best. I don't want to interfere with the alternative path that @TSny is guiding you through.
 
  • Like
Likes LeoJakob
  • #10
TSny said:
By symmetry, the magnetic moment will be in the ##z##-direction. So, you only need the ##z##-component of ##\vec {e}_{r'} \times \vec {e}_{\phi}##. What is the ##z##-component of ##-\vec{e}_{\theta}## in terms of the angle ##\theta##?
##(\vec {e}_{r'} \times \vec {e}_{\phi})_z=(-\vec {e}_{\theta})_z=\sin \theta ##? I don't know how I can represent ##\vec e_z## in spherical coordinates?
 
  • #11
LeoJakob said:
##(\vec {e}_{r'} \times \vec {e}_{\phi})_z=(-\vec {e}_{\theta})_z=\sin \theta ##?
Yes. Good.
 
  • #12
LeoJakob said:
I don't know how I can represent ##\vec e_z## in spherical coordinates?
From a sketch you should be able to identify the angle that ##\vec e_z## makes to each of the spherical-coordinate unit vectors: ##\vec e_r, \vec e_{\theta}## and ##\vec e_{\phi}##. Then you can fill in the parentheses in $$\vec e_z = (\,\,\,) \vec e_r + (\,\,\,) \vec e_{\theta} + (\,\,\,)\vec e_{\phi}.$$
You should find that the content of one of the parentheses is zero and the others are functions of ##\theta##.
 
  • Like
Likes LeoJakob
  • #13
Ahhhh, ##\vec e_\phi## is zero becaues it is perpendicular to the ##z##- axis., so it will not contribute to a ##z## component.
So I'm now at this point:

$$ \left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\lambda\left(\begin{array}{c}\sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta\end{array}\right)+\mu\left(\begin{array}{c}\cos \theta \cos \phi \\ \cos \theta \sin \phi \\ -\sin \theta\end{array}\right) $$

It is necessary that:
$$\sin \theta \cos \phi=\sin \theta \sin \phi=\cos \theta \cos \phi=\cos \theta \sin \phi=0$$

I haven’t gotten any further with my thought process.

Edit - new thoughts: $$ \begin{array}{l}\phi=0 \\ \left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)= \vec{e}_{z}=\cos \theta \vec e_r -\sin \theta \vec{e}_{\theta} ?\end{array} $$
 
Last edited:
  • #14
LeoJakob said:
Edit - new thoughts: $$ \vec{e}_{z}=\cos \theta \vec e_r -\sin \theta \vec{e}_{\theta} ?$$
Yes, that's it.
 
  • Like
Likes LeoJakob
  • #15
$$ \begin{array}{l}m=\frac{1}{2} \int \limits_{V} \vec{r}^{\prime} \times \vec{j}\left(\vec{r}^{\prime}\right) d V \\ \vec{\omega}=\omega \overrightarrow{e_{z}}=\omega\left(\cos \theta \vec{e}_{r}-\sin \theta \overrightarrow{e_{\theta}}\right) \\ \vec{v}=\vec{\omega} \times \vec{r}=\left(\omega \vec{e}_{z}\right) \times\left(r \vec{e}_{r}\right) \\ =\omega r\left[\left(\cos \theta \vec{e}_{r}-\sin \theta \vec{e}_{\theta}\right) \times \vec{e}_{r}\right] \\ =\operatorname{\omega r}[\cos \theta(\underbrace{\left(\vec{e}_{r} \times \vec{e}_{r}\right.}_{=0})-\sin \theta(\underbrace{\overrightarrow{e_{\theta}} \times \vec{e}_{r}}_{-\vec{e}_{\phi}})] \\ =\omega r \sin \theta \vec{e}_{\phi} \\ \vec{j}=\rho \vec{v}=\rho \cdot \omega r \sin \theta \vec{e}_{\phi} \\ \vec{r}^{\prime} \times \vec{j}=\left(r^{\prime} \overrightarrow{e_{r^{\prime}}}\right) \times \vec{j} \\ =p \omega\left(r^{\prime}\right)^{2} \sin \theta(\underbrace{\overrightarrow{e_{r}} \times \overrightarrow{e_{\phi}}}_{-\overrightarrow{e_{\theta}}}) \\\end{array} $$

$$ \begin{aligned} \vec{m} & =\frac{1}{2} \int \limits_{0}^{2 \pi} d \phi \int \limits_{0}^{R} \rho \omega\left(r^{\prime}\right)^{4} d r^{\prime} \int \limits_{0}^{\pi} \sin ^{2} \theta d \theta\left(-\vec{e}_{\theta}\right) \\ & =-\rho \omega \pi\left[\frac{\left(r^{\prime}\right)^{5}}{5}\right]_{0}^{R} \cdot \frac{\pi}{2} \vec{e}_{\theta} \\ & =-p \omega \pi^{2} \frac{R^{5}}{10} \vec{e}_{\theta} \\ & =\left(\frac{3 Q}{4 \pi R^{3}}\right) \omega \pi^{2} \frac{R^{5}}{10} \overrightarrow{e_{\theta}}=-\frac{3\pi}{40}Q\omega R^2\overrightarrow{e_{\theta}}\end{aligned} $$
 
Last edited:
  • #16
Everything looks good up to here:
LeoJakob said:
$$ \begin{aligned} \vec{m} & =\frac{1}{2} \int \limits_{0}^{2 \pi} d \phi \int \limits_{0}^{R} \rho \omega\left(r^{\prime}\right)^{4} d r^{\prime} \int \limits_{0}^{\pi} \sin ^{2} \theta d \theta\left(-\vec{e}_{\theta}\right) \\ \end{aligned} $$
##\vec e_{\theta}## has a direction that depends on the value of ##\theta##. So, you can't treat ##\vec e_{\theta}## as a constant vector when integrating over ##\theta##.

We know that ##\vec m## is in the ##z## direction. So, we only need ##m_z##.$$ m_z = \vec m \cdot \vec{e}_z = \frac{1}{2} \int \limits_{0}^{2 \pi} d \phi \int \limits_{0}^{R} \rho \omega\left(r^{\prime}\right)^{4} d r^{\prime} \int \limits_{0}^{\pi} \sin ^{2} \theta \left[\left(-\vec{e}_{\theta}\right) \cdot \vec{e}_z\right] d \theta$$ Substitute for ##\left(-\vec{e}_{\theta}\right) \cdot \vec{e}_z## and then do the ##\theta## integration.
 
  • Like
Likes LeoJakob
  • #17
TSny said:
We know that ##\vec m## is in the ##z## direction. So, we only need ##m_z##.$$ m_z = \vec m \cdot \vec{e}_z = \frac{1}{2} \int \limits_{0}^{2 \pi} d \phi \int \limits_{0}^{R} \rho \omega\left(r^{\prime}\right)^{4} d r^{\prime} \int \limits_{0}^{\pi} \sin ^{2} \theta \left[\left(-\vec{e}_{\theta}\right) \cdot \vec{e}_z\right] d \theta$$ Substitute for ##\left(-\vec{e}_{\theta}\right) \cdot \vec{e}_z## and then do the ##\theta## integration.
$$ \begin{array}{l} m_z = \vec m \cdot \vec{e}_z = \frac{1}{2} \int \limits_{0}^{2 \pi} d \phi \int \limits_{0}^{R} \rho \omega\left(r^{\prime}\right)^{4} d r^{\prime} \int \limits_{0}^{\pi} \sin ^{2} \theta \left[\left(-\vec{e}_{\theta}\right) \cdot \vec{e}_z\right] d \theta=\frac{1}{2} 2 \pi \int \limits_{0}^{R} \rho \omega\left(r^{\prime}\right)^{4} d r^{\prime} \int \limits_{0}^{\pi} \sin ^{2} \theta(\sin \theta) d \theta \\ =p \omega \pi \frac{R^{5}}{5} \cdot \frac{4}{3}=\frac{3}{4} \frac{Q}{\pi R^{3}} \omega \pi \frac{4}{3} \frac{R^{5}}{5}=\frac{1}{5} \omega Q R^{2}\end{array} $$

Thank you very much for taking the time to help me :) and for your patience.
 
  • Like
Likes TSny
  • #18
That looks very good. Nice work.

Here's something that you might see in a later course. For any object with uniform charge density ##\rho_c## and uniform mass density ##\rho_m## and spinning about a fixed axis, there is a simple relation between the magnetic moment ##\vec M## and the angular momentum ##\vec L##. $$\vec M = \frac 1 2 \int \vec r \times j(\vec r) dV = \frac 1 2 \int \vec r \times \rho_c \vec v(\vec r) dV = \frac 1 2 \rho_c \int \vec r \times \vec v(\vec r) dV = \frac 1 2 \frac{\rho_c}{\rho_m}\int \vec r \times \vec v(\vec r) \rho_m dV$$ The integral on the far right gives the angular momentum. So, $$\vec M = \frac 1 2 \frac{\rho_c}{\rho_m} \vec L = \frac{Q}{2m} \vec L, $$ where ##m## is the total mass of the object.

For a sphere with uniform mass density, we have ##\vec L = I \vec \omega = \frac 2 5 m R^2 \vec \omega##. Substituting this into the relation above, $$\vec M = \frac 1 5 Q R^2 \vec{\omega}.$$
 
  • Like
Likes LeoJakob

FAQ: Calculate the magnetic moment of a rotating sphere

What is the formula for calculating the magnetic moment of a rotating sphere?

The magnetic moment (μ) of a rotating sphere can be calculated using the formula μ = (1/2) * q * ω * R², where q is the charge of the sphere, ω is the angular velocity, and R is the radius of the sphere.

How does the charge distribution affect the magnetic moment of a rotating sphere?

The charge distribution is crucial because the formula assumes a uniformly charged sphere. If the charge is not uniformly distributed, the calculation becomes more complex and requires integrating the contributions from each differential element of charge over the sphere's volume.

What units are used in the magnetic moment formula for a rotating sphere?

The units used in the formula are as follows: charge (q) is in coulombs (C), angular velocity (ω) is in radians per second (rad/s), radius (R) is in meters (m), and the resulting magnetic moment (μ) is in ampere-square meters (A·m²).

Can the magnetic moment of a rotating sphere be zero?

Yes, the magnetic moment of a rotating sphere can be zero if the sphere has no net charge (q = 0). This is because the magnetic moment is directly proportional to the charge of the sphere.

How does the angular velocity affect the magnetic moment of a rotating sphere?

The angular velocity (ω) directly affects the magnetic moment, as the magnetic moment is proportional to the angular velocity. Increasing the angular velocity will increase the magnetic moment, assuming the charge and radius remain constant.

Back
Top