- #1
LeoJakob
- 24
- 2
- Homework Statement
- A sphere with radius ##R ## is spatially homogeneously loaded and rotates with constant angular velocity ##\vec{ \omega}## around the ##z ## axis running through the center of the sphere.
Calculate the magnetic moment of the sphere ##\vec m##
- Relevant Equations
- ##\vec{m}=\frac{1}{2} \int \limits_{V} \vec{r}^{\prime} \times \vec{j}\left(\vec{r}^{\prime}\right) d V, \vec{j}(\vec{r}, t)=\rho(\vec{r}, t) \vec{v}(\vec{r}, t), \vec{v}=\vec{\omega} \times \vec{r}##
Ich wäre Ihnen sehr dankbar, wenn Sie sich meine Lösung der folgenden Übung ansehen:
A sphere with radius ##R ## is spatially homogeneously loaded and rotates with constant angular velocity ##\vec{ \omega}## around the ##z ## axis running through the center of the sphere.
Calculate the magnetic moment of the sphere ##\vec m##
First I need to calculate ##\vec{j}(\vec{r}, t)=\rho(\vec{r}, t) \vec{v}(\vec{r}, t)##
I will use spherical coordinates:
(i) I calculated ##\rho (r)=\frac{3 Q}{4 \pi R^{3}} \theta(R-r)## with the total charge ##Q##
(ii)
$$\vec{\omega}=\omega \vec{e}_{z}, \vec{r}=r \vec{e}_{r}$$
$$\vec{v}=\vec{\omega} \times \vec{r}=r \omega\left(\vec{e}_{z} \times \vec{e}_{r}\right)=r \omega \vec{e}_{\phi}$$
$$\vec{j}(\vec{r})=\rho(r) \vec{v}=\rho(r) \vec{\omega} \times \vec{r}=\rho(r) r \omega \vec{e}_{\phi}=j(r) \vec{e}_{\phi} $$
$$\vec{m}=\frac{1}{2} \int \limits_{V} \vec{r}^{\prime} \times \vec{j}\left(\vec{r}^{\prime}\right) d V \\
=\frac{1}{2} \int \limits_{V}\left(r^{\prime} \vec{e}_{r'}\right) \times\left(j\left(r^{\prime}) \vec{e}_{\phi}\right) d V\right. \\
=\frac{1}{2} \int \limits_{V} r^{\prime} j\left(r^{\prime}\right)(\underbrace{\vec{e}_{r'} \times \vec{e}_{\phi}}_{\overrightarrow{e_{z}}}) d V \\
=\frac{1}{2} \int \limits_{0}^{2 \pi} d \phi \int \limits_{0}^{\pi} \sin \theta d \theta \int \limits_{0}^{\infty} r'\left(\frac{3 Q}{4 \pi R^{3}} \theta(R-r')\right) \cdot r^{\prime} \omega\left(r^{\prime}\right)^{2} d r^{\prime} \vec{e}_{z} \\
=\frac{1}{2}(2 \pi)(-2) \frac{3 Q}{4 \pi R^{3}} \int \limits_{0}^{R}\left(r^{\prime}\right)^{4} d r^{\prime} \vec{e}_{z} \\ =-\frac{3}{2} \frac{Q \omega}{R^{3}}\left[\frac{\left(r^{\prime}\right)^{5}}{5}\right]_{0}^{R}\vec{e}_{z} =-\frac{3}{10} Q \omega R^{2} \vec{e}_{z}
$$
The units are correct ##[ A\cdot m^2]##
A sphere with radius ##R ## is spatially homogeneously loaded and rotates with constant angular velocity ##\vec{ \omega}## around the ##z ## axis running through the center of the sphere.
Calculate the magnetic moment of the sphere ##\vec m##
First I need to calculate ##\vec{j}(\vec{r}, t)=\rho(\vec{r}, t) \vec{v}(\vec{r}, t)##
I will use spherical coordinates:
(i) I calculated ##\rho (r)=\frac{3 Q}{4 \pi R^{3}} \theta(R-r)## with the total charge ##Q##
(ii)
$$\vec{\omega}=\omega \vec{e}_{z}, \vec{r}=r \vec{e}_{r}$$
$$\vec{v}=\vec{\omega} \times \vec{r}=r \omega\left(\vec{e}_{z} \times \vec{e}_{r}\right)=r \omega \vec{e}_{\phi}$$
$$\vec{j}(\vec{r})=\rho(r) \vec{v}=\rho(r) \vec{\omega} \times \vec{r}=\rho(r) r \omega \vec{e}_{\phi}=j(r) \vec{e}_{\phi} $$
$$\vec{m}=\frac{1}{2} \int \limits_{V} \vec{r}^{\prime} \times \vec{j}\left(\vec{r}^{\prime}\right) d V \\
=\frac{1}{2} \int \limits_{V}\left(r^{\prime} \vec{e}_{r'}\right) \times\left(j\left(r^{\prime}) \vec{e}_{\phi}\right) d V\right. \\
=\frac{1}{2} \int \limits_{V} r^{\prime} j\left(r^{\prime}\right)(\underbrace{\vec{e}_{r'} \times \vec{e}_{\phi}}_{\overrightarrow{e_{z}}}) d V \\
=\frac{1}{2} \int \limits_{0}^{2 \pi} d \phi \int \limits_{0}^{\pi} \sin \theta d \theta \int \limits_{0}^{\infty} r'\left(\frac{3 Q}{4 \pi R^{3}} \theta(R-r')\right) \cdot r^{\prime} \omega\left(r^{\prime}\right)^{2} d r^{\prime} \vec{e}_{z} \\
=\frac{1}{2}(2 \pi)(-2) \frac{3 Q}{4 \pi R^{3}} \int \limits_{0}^{R}\left(r^{\prime}\right)^{4} d r^{\prime} \vec{e}_{z} \\ =-\frac{3}{2} \frac{Q \omega}{R^{3}}\left[\frac{\left(r^{\prime}\right)^{5}}{5}\right]_{0}^{R}\vec{e}_{z} =-\frac{3}{10} Q \omega R^{2} \vec{e}_{z}
$$
The units are correct ##[ A\cdot m^2]##