- #1
devon
- 21
- 0
Homework Statement
Calculate the number of sodium ions entering a non-myelinated axon during the action potential, per metre of axon length. The change in potential is 100 mV, the axon membrane capacitance per unit length is 3 × 10−7 F/m, and the charge on an ion is 1.6 × 10−19 C.
What concentration change does this produce and how does it compare with the concentration of sodium ions in the cell in its resting state.
During the resting state of the axon, typical concentrations of sodium and potassium ions are 15 and 150 millimole/litre, respectively. Avogadro’s number is 6.02 × 1023 per mole, and the radius of the axon is 5 microns. (1 micron = 1 × 10−6 metres.)
Homework Equations
∆Q = C ∆V
The Attempt at a Solution
[/B]
First I found the change in charge which is 3 × 10−7 F/m X 0.1V = 3x10^-8 C/m
I then divided this by the charge of 1 ion to find the amount of entering ions per axon meter: (3x10^-8 C/m)/(1.6 × 10−19 C) = 1.875x10^11 Na+ ions per m.
Now to find the number of ions in a resting axon with radius 5microns. 0.015mole/L Na+ x 6.02x10^23 divided by 1000cm3 = 9.03x10^18 Na ions per cm3.
Axon Volume: pi X (5x10^-4cm)^2 x 100cm = 7.853981634x10^-5cm3.
7.85x10^-5cm3 x 9.03x10^18 Na ions/cm3 = 7.09x10^14 Na ions in a resting axon
7.09x10^15 K ions in a resting axon (150mM is 10 fold higher than 15)
So the amount of ions entering is almost insignificant (11 power vs 14) - I guess this question is meant to show us how easily charge is changed while concentration remains the same.
I'm happy with my working so far (please tell me if I've done something wrong!) but can someone help me figure out the concentration change produced by the entering sodium ions. Does the concentration change significantly at all? I'm a bit confused on how to account for the exiting K+ ions.
Thanks