- #1
Aurelius120
- 251
- 24
- Homework Statement
- Block of mass 0.9kg. Spring(k) on frictionless floor. Spring compressed to ##\sqrt 2##cm. Block at ##1/\sqrt 2##cm from wall. Collision is elastic and time period of motion 0.2s. Approximate value of k?
- Relevant Equations
- ##x=A sin(\omega t+\phi)##
##\omega = \sqrt{\frac{k}{m}}##
So I proceed as:
Total time for 1 oscillation is 0.2s
$$\frac{1}{\sqrt{2}}=\sqrt{2} \sin ({\omega t_1})$$
$$\sqrt{2}=\sqrt{2} \sin ({\omega t_2})$$
Therefore
$$\omega t_2=\frac{\pi}{2}$$
$$\omega t_1=\frac{\pi}{6}$$
$$\omega ×2(t_1+t_2)=2×\left( \frac{\pi}{2}+\frac{\pi}{6}\right) $$
Since ##(t_1+t_2)## is time to complete half oscillation, ##2(t_1+t_2)=0.2##
$$\implies \omega^2=\frac{k}{m}=\frac{k}{0.9}=\left( \frac{4\pi}{3×0.2}\right)^2$$
Therefore ##k=400N/cm##
The answer given is ##100Nm^{-1}##
How to obtain the correct answer?