- #1
skrat
- 748
- 8
Homework Statement
An electron with speed ##v_0=3/5c## flies 1m through electric field with ##E=1MV/m##. Calculate the angle of the flight when the electron exits the field and it's full energy.
Homework Equations
The Attempt at a Solution
The velocity changes only in one direction, let's say that this is direction of axis x, than ##E=(E,0,0)## and ##F=(eE,0,0)## while ##v_1=(0,3/5c,0)## and ##v_2=(v_x,3/5c,0)##
##eE=m\gamma \frac{dv}{dt}##
##\frac{eE}{m}t=\gamma v_x## let's say ##A=\frac{eE}{m}t##
##A=\frac{v_x}{1-\frac{v_x^2}{c^2}}## or do I have to use ##\frac{1}{1-\frac{v_x^2-v_y^2}{c^2}}## for ##\gamma ## ??
so ##v_x=\frac{cA}{\sqrt{A^2+c^2}}=286 779 393 m/s##
and therefore ##tan\alpha =\frac{v_y}{v_x}## so ##\alpha =32°##.
Is this ok?
Now I'm really having some troubles with calculating the full energy...
For example: ##w=m\gamma c^2=m\frac{1}{1-\frac{v_x^2}{c^2}-\frac{v_y^2}{c^2}}c^2## How does this sound?
One more thing, I know I am not allowed to calculate the speed when exiting as ##v_2=\sqrt{v_{x}^{2}+v_{y}^{2}}## but how can I?