Calculate the work done by pressure rupturing a spherical containment

In summary, the conversation discusses a simulation in which a spherical object is subjected to a time-dependent pressure on the inner surface, causing it to break into smaller triangles. The goal is to calculate the energy brought by the pressure to the system and the conversation explores different methods to do so. The simulation data includes nodal coordinates, velocities, and displacements for three vertices of one triangle, and the ultimate goal is to determine the total energy brought into the system by the pressure. The question also mentions knowing the energy needed to break the sphere into parts, which is denoted as E.
  • #1
miraboreasu
24
0
I am post-processing a simulation.

A spherical is meshed by many little triangles. A time-dependent pressure (p=10*t) is equally applied to the inner surface of a spherical in the normal direction all the time. After t1=0.1s, the spherical is broken, and each little triangle is disconnected.
Assuming during t1, p is constantly 1 (10*0.1). My ultimate goal is to calculate the energy brought by p to this system

My idea is to use p*area*displacement for 1 triangle, then do the same thing for all other triangles

Here is what I have from the simulation (for one triangle).
Nodal coordinates (vector in x,y,z) for three vertices of the triangle
p1: 2.48309 2.51276 2.45388
p2: 2.4875 2.50415 2.45103
p3: 2.47773 2.50283 2.45452
Nodal velocities (vector in x,y,z) for three vertices of the triangle
v1: -11.352 4.68846 -58.9501
v2: -10.2788 -1.54017 -60.6666
v3: 12.043 6.94501 -34.1632
Nodal displacements (vector in x,y,z) for three vertices of the triangle
d1: -0.00023 0.000131 -0.00071
d2: -0.00025 6.02E-05 -0.00066
d3: -0.00027 0.000148 -0.00066

I write the following MATLAB code to compute the area of this triangle from nodal coordinates
'''
p1=[2.48309 2.51276 2.45388];
p2=[2.4875 2.50415 2.45103];
p3=[2.47773 2.50283 2.45452];

edge12=p2-p1;
edge13=p3-p1;

area = 0.5*norm(cross(edge12,edge13),2)
'''

Then I use p*area to get the force, but I don't know how to get the right (or approximated) displacement, since force should be in the same direction as displacement, what I have is the Nodal displacements shown above.

Any idea to figure out the energy brought by p to this system during t1? It will be great if the answer is explained in detail
 
Physics news on Phys.org
  • #2
That should equal the amount of energy that is initially needed to increase the internal pressure of the sphere from zero (respect to atmospheric pressure) to the rupture pressure.
 
  • Like
Likes berkeman
  • #3
Lnewqban said:
That should equal the amount of energy that is initially needed to increase the internal pressure of the sphere from zero (respect to atmospheric pressure) to the rupture pressure.
Can you please be more specific? Assume I know the energy needed to tear the sphere into parts, which is E.
Besides, the data I provide is all I have. What should I use to calculate it?
 
  • #4
Welcome to PF.

miraboreasu said:
A spherical is meshed by many little triangles. A time-dependent pressure (p=10*t) is equally applied to the inner surface of a spherical in the normal direction all the time. After t1=0.1s, the spherical is broken, and each little triangle is disconnected.
Assuming during t1, p is constantly 1 (10*0.1). My ultimate goal is to calculate the energy brought by p to this system
Could you please say more about what you are trying to simulate/calculate? If you are wanting to calculate how much energy you need to use to compress a gas to rupture a spherical enclosure, the post-rupture dynamics seem irrelvant to me. You would need to simulate the strength and deformation of the enclosure based on the material properties of the enclosure material, and the properties of the gas that is going to cause the rupture.

The more background that you can give us about your project and simulation, the better we can help you. :smile:
 
  • #5
berkeman said:
Welcome to PF.Could you please say more about what you are trying to simulate/calculate? If you are wanting to calculate how much energy you need to use to compress a gas to rupture a spherical enclosure, the post-rupture dynamics seem irrelvant to me. You would need to simulate the strength and deformation of the enclosure based on the material properties of the enclosure material, and the properties of the gas that is going to cause the rupture.

The more background that you can give us about your project and simulation, the better we can help you. :smile:
Hey berkeman,

I am post-process my simulation. My simulation is to add a dynamic loading to a sphere surface. I know the energy needed to tear the sphere into parts.

I know how much pressure is added, since it is added as a boundary condition. Under this pressure, the sphere is broken into triangle as it was meshed, and I have these data from the output of the simulation
Nodal coordinates (vector in x,y,z) for three vertices of the triangle
p1: 2.48309 2.51276 2.45388
p2: 2.4875 2.50415 2.45103
p3: 2.47773 2.50283 2.45452
Nodal velocities (vector in x,y,z) for three vertices of the triangle
v1: -11.352 4.68846 -58.9501
v2: -10.2788 -1.54017 -60.6666
v3: 12.043 6.94501 -34.1632
Nodal displacements (vector in x,y,z) for three vertices of the triangle
d1: -0.00023 0.000131 -0.00071
d2: -0.00025 6.02E-05 -0.00066
d3: -0.00027 0.000148 -0.00066

I want to know the total energy brought into this system by my boundary condition pressure p
 
  • #6
miraboreasu said:
Can you please be more specific? Assume I know the energy needed to tear the sphere into parts, which is E.
Besides, the data I provide is all I have. What should I use to calculate it?
Energy in = energy out

It is like a compressed spring: elastic energy is accumulated, and then, released.
Nothing else will separate the little triangles.
Once detached, they should move radially out at same speed than liberated air.

The energy of the expanding air should dissipate with the square of the radial distance from the center of the sphere.
...Or so I believe. :smile:
 
  • #7
miraboreasu said:
I am post-process my simulation. My simulation is to add a dynamic loading to a sphere surface. I know the energy needed to tear the sphere into parts.
How do you know the value of that energy? What were your calculations/simulations to tell you that? What is the material and its thickness? What are its properties that are germaine to its rupturing?
 
  • #8
berkeman said:
How do you know the value of that energy? What were your calculations/simulations to tell you that? What is the material and its thickness? What are its properties that are germaine to its rupturing?
The simulation outputs this energy. It is considered an elastic material.
 

FAQ: Calculate the work done by pressure rupturing a spherical containment

What is the formula for calculating the work done by pressure rupturing a spherical containment?

The formula for calculating the work done is W = P * V, where W is the work done, P is the pressure, and V is the volume of the spherical containment.

How do you determine the pressure in a spherical containment?

The pressure in a spherical containment can be determined by using the ideal gas law, which states that pressure is equal to the number of moles of gas multiplied by the gas constant and the temperature, divided by the volume.

What factors affect the work done by pressure rupturing a spherical containment?

The work done by pressure rupturing a spherical containment is affected by the pressure, volume, and material properties of the containment. Additionally, the temperature and state of the gas inside the containment can also impact the work done.

How does the work done by pressure rupturing a spherical containment relate to energy?

The work done by pressure rupturing a spherical containment is a measure of the energy required to rupture the containment. This energy is converted from the internal energy of the gas inside the containment.

Can the work done by pressure rupturing a spherical containment be negative?

Yes, the work done by pressure rupturing a spherical containment can be negative if the pressure inside the containment decreases, causing the volume to increase. This means that the gas inside the containment is doing work on its surroundings rather than the other way around.

Back
Top