- #1
viniterranova
- 8
- 0
1. A particle of mass m is suspended from the ceiling by a spring with constant K and relaxed length initial lo, whose mass is negligible. The particle is released at rest with the spring relaxed. Taking the Oz axis directed vertically downward, with the origin on the roof, calculate the z position of the particle as a function of time.
x=[Acos(wt+phi)3. I know that the net force is given by F(net)=-kx+P where F(net) it will be d^2x/dt^2, so the expression takes the form. m*d^2x/dt^2=-kx+mg.
How we know that d^2x/dt^2=-w^2x, So m(-w^2x)=-kL(o)+mg, So -w^2*x=-kL(o)/m+mg/m
x=[Acos(wt+phi)
-w^2[Acos(wt+phi)= -9kL(o)/m+mg/m) We know that w=sqrt(k/m)
-w^2[Acos(sqrt(k/m)*t+phi)= -(kL(o)/m+mg/m)
So help me to know if Am I right or not about the equation.
Homework Equations
x=[Acos(wt+phi)3. I know that the net force is given by F(net)=-kx+P where F(net) it will be d^2x/dt^2, so the expression takes the form. m*d^2x/dt^2=-kx+mg.
How we know that d^2x/dt^2=-w^2x, So m(-w^2x)=-kL(o)+mg, So -w^2*x=-kL(o)/m+mg/m
x=[Acos(wt+phi)
-w^2[Acos(wt+phi)= -9kL(o)/m+mg/m) We know that w=sqrt(k/m)
-w^2[Acos(sqrt(k/m)*t+phi)= -(kL(o)/m+mg/m)
So help me to know if Am I right or not about the equation.
Last edited by a moderator: