- #1
juantheron
- 247
- 1
Evaluation of $\displaystyle \lim_{n\rightarrow \infty}\sum^{n}_{k=0}\frac{1}{\binom{n}{k}}$ is
I have tried like this way::
Let $\displaystyle a_{n} = \sum^{n}_{k=0}\frac{1}{\binom{n}{k}} = \frac{1}{\binom{n}{0}}+\frac{1}{\binom{n}{1}}+\sum^{n-2}_{k=2}\frac{1}{\binom{n}{k}}+\frac{1}{\binom{n}{n-1}}+\frac{1}{\binom{n}{n}}\geq 2+\frac{2}{n}$
Now I did not understand How can I calculate upper bound for $a_{n}$
Thanks
I have tried like this way::
Let $\displaystyle a_{n} = \sum^{n}_{k=0}\frac{1}{\binom{n}{k}} = \frac{1}{\binom{n}{0}}+\frac{1}{\binom{n}{1}}+\sum^{n-2}_{k=2}\frac{1}{\binom{n}{k}}+\frac{1}{\binom{n}{n-1}}+\frac{1}{\binom{n}{n}}\geq 2+\frac{2}{n}$
Now I did not understand How can I calculate upper bound for $a_{n}$
Thanks