- #1
karush
Gold Member
MHB
- 3,269
- 5
\begin{align*}\displaystyle
\vec{V_2}
&=\int_0^3 \left[\left(
\frac{4}{\sqrt{1+t}}\right){I}-\left(7t^2 \right){j}
+\left(\frac{14t}{\left(1+t^2 \right)^2}\right){k}\right] dt \\
&=\left[\int_0^3
\frac{4}{\sqrt{1+t}}
dt \right] {I}
-\left[\int_0^3 7t^2 dt\right] {j}
+\left[
\int_0^3\frac{14t}{\left(1+t^2 \right)^2}\, dt
\right]{k}
\end{align*}
Just seeing if going in the right direction
\vec{V_2}
&=\int_0^3 \left[\left(
\frac{4}{\sqrt{1+t}}\right){I}-\left(7t^2 \right){j}
+\left(\frac{14t}{\left(1+t^2 \right)^2}\right){k}\right] dt \\
&=\left[\int_0^3
\frac{4}{\sqrt{1+t}}
dt \right] {I}
-\left[\int_0^3 7t^2 dt\right] {j}
+\left[
\int_0^3\frac{14t}{\left(1+t^2 \right)^2}\, dt
\right]{k}
\end{align*}
Just seeing if going in the right direction
Last edited: