- #1
karush
Gold Member
MHB
- 3,269
- 5
compute the product.
$\left(\log_{2}\left({3}\right)\right)\cdot
\left(\log_{3}\left({4}\right)\right)\cdot
\left(\log_{4}\left({5}\right)\right)\cdots
\left(\log_{126}\left({127}\right)\right)\cdot
\left(\log_{127}\left({128}\right)\right)$
The answer to this is 7
I assume this can be done with a $\lim_{{2}\to{127}}$
or use a change of base
$\frac{\log\left({3}\right)}{\log\left({2}\right)}\cdot
\frac{\log\left({4}\right)}{\log\left({3}\right)}$ etc
but I can't seem to figure out the setup
$\left(\log_{2}\left({3}\right)\right)\cdot
\left(\log_{3}\left({4}\right)\right)\cdot
\left(\log_{4}\left({5}\right)\right)\cdots
\left(\log_{126}\left({127}\right)\right)\cdot
\left(\log_{127}\left({128}\right)\right)$
The answer to this is 7
I assume this can be done with a $\lim_{{2}\to{127}}$
or use a change of base
$\frac{\log\left({3}\right)}{\log\left({2}\right)}\cdot
\frac{\log\left({4}\right)}{\log\left({3}\right)}$ etc
but I can't seem to figure out the setup