- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $D$ be the space $\{x,y,z)\mid z\geq 0, x^2+y^2\leq 1, x^2+y^2+z^2\leq 4\}$. I want to calculate the integral $\iiint_D x^2\,dx\,dy\,dz$. I have done the following:
We have that $x^2+y^2+z^2\leq 4\Rightarrow z^2\leq 4-x^2-y^2 \Rightarrow -\sqrt{4-x^2-y^2}\leq z\leq \sqrt{4-x^2-y^2}$. Since $z\geq 0$ we get that $0\leq z \leq \sqrt{4-x^2-y^2}$.
It holds that $4-x^2-y^2\geq 0$, i.e. $x^2+y^2\leq 4$ since $x^2+y^2\leq 1$.
We have that $x^2+y^2\leq 1 \Rightarrow y^2\leq 1-x^2 \Rightarrow -\sqrt{1-x^2}\leq y \leq \sqrt{1-x^2}$.
It must hold that $1-x^2\geq 0 \Rightarrow x^2\leq 1 \Rightarrow -1\leq x\leq 1$.
Therefore $D$ can be written also in the following form: $$D=\{(x,y,z)\mid -1\leq x\leq 1, -\sqrt{1-x^2}\leq y \leq \sqrt{1-x^2}, 0\leq z\leq \sqrt{4-x^2-y^2}\}$$
Therefore, we get \begin{align*}\iiint_D x^2 \,dx\,dy\,dz&=\int_{-1}^1 \left (\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\left (\int_0^{\sqrt{4-x^2-y^2}}x^2 \ dz\right ) \ dy\right ) \ dx \\ & =\int_{-1}^1 \left (\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}x^2\sqrt{4-x^2-y^2} \ dy\right ) \ dx \\ & =\int_{-1}^1 x^2\left (\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\sqrt{4-x^2-y^2} \ dy\right ) \ dx \end{align*}
To calculate the inner integral $\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\sqrt{4-x^2-y^2}dy$ we do the following:
We set $y=\sqrt{4-x^2}\cdot \sin t$, then $dy=\sqrt{4-x^2}\cdot \cos t \ dt$.
If $y=-\sqrt{1-x^2}$ then $t=\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )$ and if $y=\sqrt{1-x^2}$ then $t=\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )$.
Therefore we get the following:
\begin{align*}\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\sqrt{4-x^2-y^2}dy&=\int_{\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )}^{\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )}(4-x^2)\cdot \cos^2t \ dt \\ & = (4-x^2)\cdot\int_{\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )}^{\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )} \frac{1+\cos (2t)}{2} \ dt \\ & = \frac{4-x^2}{2}\cdot\left [ t+\frac{\sin (2t)}{2} \right ]_{\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )}^{\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )} \\ & = \frac{4-x^2}{2}\cdot\left [ \arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )-\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right ) \\ +\frac{1}{2}\sin \left (2\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )\right )-\frac{1}{2}\sin \left (\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )\right )\right ]\end{align*}
Is everything correct so far? How could we continue? (Wondering)
Let $D$ be the space $\{x,y,z)\mid z\geq 0, x^2+y^2\leq 1, x^2+y^2+z^2\leq 4\}$. I want to calculate the integral $\iiint_D x^2\,dx\,dy\,dz$. I have done the following:
We have that $x^2+y^2+z^2\leq 4\Rightarrow z^2\leq 4-x^2-y^2 \Rightarrow -\sqrt{4-x^2-y^2}\leq z\leq \sqrt{4-x^2-y^2}$. Since $z\geq 0$ we get that $0\leq z \leq \sqrt{4-x^2-y^2}$.
It holds that $4-x^2-y^2\geq 0$, i.e. $x^2+y^2\leq 4$ since $x^2+y^2\leq 1$.
We have that $x^2+y^2\leq 1 \Rightarrow y^2\leq 1-x^2 \Rightarrow -\sqrt{1-x^2}\leq y \leq \sqrt{1-x^2}$.
It must hold that $1-x^2\geq 0 \Rightarrow x^2\leq 1 \Rightarrow -1\leq x\leq 1$.
Therefore $D$ can be written also in the following form: $$D=\{(x,y,z)\mid -1\leq x\leq 1, -\sqrt{1-x^2}\leq y \leq \sqrt{1-x^2}, 0\leq z\leq \sqrt{4-x^2-y^2}\}$$
Therefore, we get \begin{align*}\iiint_D x^2 \,dx\,dy\,dz&=\int_{-1}^1 \left (\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\left (\int_0^{\sqrt{4-x^2-y^2}}x^2 \ dz\right ) \ dy\right ) \ dx \\ & =\int_{-1}^1 \left (\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}x^2\sqrt{4-x^2-y^2} \ dy\right ) \ dx \\ & =\int_{-1}^1 x^2\left (\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\sqrt{4-x^2-y^2} \ dy\right ) \ dx \end{align*}
To calculate the inner integral $\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\sqrt{4-x^2-y^2}dy$ we do the following:
We set $y=\sqrt{4-x^2}\cdot \sin t$, then $dy=\sqrt{4-x^2}\cdot \cos t \ dt$.
If $y=-\sqrt{1-x^2}$ then $t=\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )$ and if $y=\sqrt{1-x^2}$ then $t=\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )$.
Therefore we get the following:
\begin{align*}\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\sqrt{4-x^2-y^2}dy&=\int_{\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )}^{\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )}(4-x^2)\cdot \cos^2t \ dt \\ & = (4-x^2)\cdot\int_{\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )}^{\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )} \frac{1+\cos (2t)}{2} \ dt \\ & = \frac{4-x^2}{2}\cdot\left [ t+\frac{\sin (2t)}{2} \right ]_{\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )}^{\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )} \\ & = \frac{4-x^2}{2}\cdot\left [ \arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )-\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right ) \\ +\frac{1}{2}\sin \left (2\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )\right )-\frac{1}{2}\sin \left (\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )\right )\right ]\end{align*}
Is everything correct so far? How could we continue? (Wondering)