Calculating a Triple Integral in a Bounded Region

In summary, a triple integral is an integral that involves three variables and is used to calculate the volume of a three-dimensional space or to solve problems involving three-dimensional objects. It is calculated by integrating a function over a three-dimensional region and the limits of integration depend on the shape of the region. The purpose of calculating a triple integral is to find the volume of a three-dimensional object or to solve problems involving three-dimensional systems, and it has many real-life applications in various fields.
  • #1
mathmari
Gold Member
MHB
5,049
7
Hey! :eek:

Let $D$ be the space $\{x,y,z)\mid z\geq 0, x^2+y^2\leq 1, x^2+y^2+z^2\leq 4\}$. I want to calculate the integral $\iiint_D x^2\,dx\,dy\,dz$. I have done the following:

We have that $x^2+y^2+z^2\leq 4\Rightarrow z^2\leq 4-x^2-y^2 \Rightarrow -\sqrt{4-x^2-y^2}\leq z\leq \sqrt{4-x^2-y^2}$. Since $z\geq 0$ we get that $0\leq z \leq \sqrt{4-x^2-y^2}$.

It holds that $4-x^2-y^2\geq 0$, i.e. $x^2+y^2\leq 4$ since $x^2+y^2\leq 1$.

We have that $x^2+y^2\leq 1 \Rightarrow y^2\leq 1-x^2 \Rightarrow -\sqrt{1-x^2}\leq y \leq \sqrt{1-x^2}$.

It must hold that $1-x^2\geq 0 \Rightarrow x^2\leq 1 \Rightarrow -1\leq x\leq 1$.

Therefore $D$ can be written also in the following form: $$D=\{(x,y,z)\mid -1\leq x\leq 1, -\sqrt{1-x^2}\leq y \leq \sqrt{1-x^2}, 0\leq z\leq \sqrt{4-x^2-y^2}\}$$

Therefore, we get \begin{align*}\iiint_D x^2 \,dx\,dy\,dz&=\int_{-1}^1 \left (\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\left (\int_0^{\sqrt{4-x^2-y^2}}x^2 \ dz\right ) \ dy\right ) \ dx \\ & =\int_{-1}^1 \left (\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}x^2\sqrt{4-x^2-y^2} \ dy\right ) \ dx \\ & =\int_{-1}^1 x^2\left (\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\sqrt{4-x^2-y^2} \ dy\right ) \ dx \end{align*}

To calculate the inner integral $\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\sqrt{4-x^2-y^2}dy$ we do the following:

We set $y=\sqrt{4-x^2}\cdot \sin t$, then $dy=\sqrt{4-x^2}\cdot \cos t \ dt$.

If $y=-\sqrt{1-x^2}$ then $t=\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )$ and if $y=\sqrt{1-x^2}$ then $t=\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )$.

Therefore we get the following:
\begin{align*}\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\sqrt{4-x^2-y^2}dy&=\int_{\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )}^{\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )}(4-x^2)\cdot \cos^2t \ dt \\ & = (4-x^2)\cdot\int_{\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )}^{\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )} \frac{1+\cos (2t)}{2} \ dt \\ & = \frac{4-x^2}{2}\cdot\left [ t+\frac{\sin (2t)}{2} \right ]_{\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )}^{\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )} \\ & = \frac{4-x^2}{2}\cdot\left [ \arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )-\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right ) \\ +\frac{1}{2}\sin \left (2\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )\right )-\frac{1}{2}\sin \left (\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )\right )\right ]\end{align*}

Is everything correct so far? How could we continue? (Wondering)
 
Physics news on Phys.org
  • #2
mathmari said:
Hey! :eek:

Let $D$ be the space $\{x,y,z)\mid z\geq 0, x^2+y^2\leq 1, x^2+y^2+z^2\leq 4\}$. I want to calculate the integral $\iiint_D x^2\,dx\,dy\,dz$. I have done the following:

We have that $x^2+y^2+z^2\leq 4\Rightarrow z^2\leq 4-x^2-y^2 \Rightarrow -\sqrt{4-x^2-y^2}\leq z\leq \sqrt{4-x^2-y^2}$. Since $z\geq 0$ we get that $0\leq z \leq \sqrt{4-x^2-y^2}$.

It holds that $4-x^2-y^2\geq 0$, i.e. $x^2+y^2\leq 4$ since $x^2+y^2\leq 1$.

We have that $x^2+y^2\leq 1 \Rightarrow y^2\leq 1-x^2 \Rightarrow -\sqrt{1-x^2}\leq y \leq \sqrt{1-x^2}$.

It must hold that $1-x^2\geq 0 \Rightarrow x^2\leq 1 \Rightarrow -1\leq x\leq 1$.

Therefore $D$ can be written also in the following form: $$D=\{(x,y,z)\mid -1\leq x\leq 1, -\sqrt{1-x^2}\leq y \leq \sqrt{1-x^2}, 0\leq z\leq \sqrt{4-x^2-y^2}\}$$

Therefore, we get \begin{align*}\iiint_D x^2 \,dx\,dy\,dz&=\int_{-1}^1 \left (\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\left (\int_0^{\sqrt{4-x^2-y^2}}x^2 \ dz\right ) \ dy\right ) \ dx \\ & =\int_{-1}^1 \left (\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}x^2\sqrt{4-x^2-y^2} \ dy\right ) \ dx \\ & =\int_{-1}^1 x^2\left (\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\sqrt{4-x^2-y^2} \ dy\right ) \ dx \end{align*}

To calculate the inner integral $\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\sqrt{4-x^2-y^2}dy$ we do the following:

We set $y=\sqrt{4-x^2}\cdot \sin t$, then $dy=\sqrt{4-x^2}\cdot \cos t \ dt$.

If $y=-\sqrt{1-x^2}$ then $t=\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )$ and if $y=\sqrt{1-x^2}$ then $t=\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )$.

Therefore we get the following:
\begin{align*}\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\sqrt{4-x^2-y^2}dy&=\int_{\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )}^{\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )}(4-x^2)\cdot \cos^2t \ dt \\ & = (4-x^2)\cdot\int_{\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )}^{\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )} \frac{1+\cos (2t)}{2} \ dt \\ & = \frac{4-x^2}{2}\cdot\left [ t+\frac{\sin (2t)}{2} \right ]_{\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )}^{\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )} \\ & = \frac{4-x^2}{2}\cdot\left [ \arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )-\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right ) \\ +\frac{1}{2}\sin \left (2\arcsin \left (\sqrt{\frac{1-x^2}{4-x^2}}\right )\right )-\frac{1}{2}\sin \left (\arcsin \left (-\sqrt{\frac{1-x^2}{4-x^2}}\right )\right )\right ]\end{align*}

Is everything correct so far? How could we continue? (Wondering)

This would be infinity times easier to do with cylindrical polar co-ordinates, considering most of your boundary is a cylinder...

Since $\displaystyle \begin{align*} x = r\cos{ \left( \theta \right) } , \, y = r\sin{ \left( \theta \right) } \end{align*}$ and $\displaystyle \begin{align*} x^2 + y^2 = r^2 \end{align*}$, you have

You have $\displaystyle \begin{align*} 0 \leq z \leq \sqrt{ 4 - \left( x^2 - y^2 \right) } \implies 0 \leq z \leq \sqrt{ 4 - r^2 } \end{align*}$ with $\displaystyle \begin{align*} 0 \leq r \leq 1 \end{align*}$ and $\displaystyle \begin{align*} 0 \leq \theta \leq 2\,\pi \end{align*}$, giving

$\displaystyle \begin{align*} \int{\int{\int_D{x^2 \,\mathrm{d}x}\,\mathrm{d}y}\,\mathrm{d}z} &= \int_0^{2\,\pi}{\int_0^1{\int_0^{\sqrt{4-r^2}}{\left[ r\cos{ \left( \theta \right) } \right] ^2 \, r\,\mathrm{d}z}\,\mathrm{d}r}\,\mathrm{d}\theta} \\ &= \int_0^{2\,\pi}{ \int_0^1{ r^3\cos^2{ \left( \theta \right) } \, \left[ z \right] _0^{\sqrt{4 - r^2}} \,\mathrm{d}r } \,\mathrm{d}\theta } \\ &= \int_0^{2\,\pi}{ \int_0^1{ r^3\,\sqrt{4 - r^2} \cos^2{ \left( \theta \right) } \,\mathrm{d}r } \,\mathrm{d}\theta } \\ &= \int_0^{2\,\pi}{ \frac{1}{2} \int_1^0{r^2\,\sqrt{4 - r^2} \left( -2\,r \right) \cos^2{ \left( \theta \right) } \,\mathrm{d}r } \,\mathrm{d}\theta } \end{align*}$

Now let $\displaystyle \begin{align*} u = 4 - r^2 \implies \mathrm{d}u = -2\,r \end{align*}$ noting that $\displaystyle \begin{align*} u \left( 1 \right) = 3 \end{align*}$ and $\displaystyle \begin{align*} u \left( 0 \right) = 4 \end{align*}$ giving

$\displaystyle \begin{align*} \int_0^{2\,pi}{\frac{1}{2} \int_1^0{ r^2\,\sqrt{4 - r^2} \left( -2\,r \right) \cos^2{ \left( \theta \right) } \,\mathrm{d}r }\,\mathrm{d}\theta} &= \int_0^{2\,\pi}{ \frac{1}{2}\cos^2{ \left( \theta \right) } \int_3^4{ \left( 4 - u \right) \,\sqrt{u} \,\mathrm{d}u } \,\mathrm{d}\theta } \\ &= \int_0^{2\,\pi}{ \frac{1}{2}\cos^2{ \left( \theta \right) } \int_3^4{ \left( 4\,u^{\frac{1}{2}} - u^{\frac{3}{2}} \right) \,\mathrm{d}u } \,\mathrm{d}\theta } \\ &= \int_0^{2\,\pi}{ \frac{1}{2} \cos^2{ \left( \theta \right) } \left[ \frac{8\,u^{\frac{3}{2}}}{3} - \frac{2\,u^{\frac{5}{2}}}{5} \right] _3^4 \, \mathrm{d}\theta } \\ &= \int_0^{2\,\pi}{\frac{1}{2}\cos^2{ \left( \theta \right) } \left[ \left( \frac{64}{3} - \frac{64}{5} \right) - \left( 8\cdot 3^{\frac{1}{2}} - 2 \cdot 3^{ \frac{3}{2}} \right) \right] \,\mathrm{d}\theta} \\ &= \int_0^{2\,\pi}{ \frac{1}{2} \cos^2{ \left( \theta \right) } \left( \frac{320}{15} - \frac{192}{15} - \frac{30\,\sqrt{3}}{15} \right) \,\mathrm{d}\theta } \\ &= \frac{64 - 15\,\sqrt{3}}{15} \int_0^{2\,\pi}{ \cos^2{ \left( \theta \right) } \,\mathrm{d}\theta } \\ &= \frac{64 - 15\,\sqrt{3}}{30} \int_0^{2\,\pi}{ \left[ 1 + \cos{ \left( 2\,\theta \right) } \right] \,\mathrm{d}\theta } \\ &= \frac{64 - 15\,\sqrt{3}}{30} \left[ \theta + \frac{1}{2}\sin{ \left( 2\,\theta \right) } \right] _0^{2\,\pi} \\ &= \frac{64 - 15\,\sqrt{3}}{30} \left\{ \left[ 2\,\pi - \frac{1}{2} \sin{ \left( 4\,\pi \right) } \right] - \left[ 0 - \frac{1}{2} \sin{ \left( 0 \right) } \right] \right\} \\ &= \frac{ \left( 64 - 15\,\sqrt{3} \right) \pi }{15} \end{align*}$
 
  • #3
I see! Thank you very much! (Smile)
 

FAQ: Calculating a Triple Integral in a Bounded Region

1. What is a triple integral?

A triple integral is an integral that involves three variables and is used to calculate the volume of a three-dimensional space or to solve problems involving three-dimensional objects.

2. How is a triple integral calculated?

A triple integral is calculated by integrating a function over a three-dimensional region, which is typically represented by a rectangular or cylindrical shape. The integral is evaluated by breaking the region into smaller pieces and summing up the contributions from each piece.

3. What are the limits of integration in a triple integral?

The limits of integration in a triple integral depend on the shape of the region being integrated over. For a rectangular region, the limits are the minimum and maximum values of each variable. For a cylindrical region, the limits are the minimum and maximum values of the radial distance, angle, and height.

4. What is the purpose of calculating a triple integral?

The purpose of calculating a triple integral is to find the volume of a three-dimensional object or to solve problems involving three-dimensional systems, such as calculating the mass, center of mass, or moments of inertia of an object.

5. What are some real-life applications of triple integrals?

Triple integrals have many real-life applications, including calculating the volume of a water tank, finding the center of mass of a solid object, and computing the total mass of a three-dimensional object. They are also used in physics, engineering, and economics to solve problems involving three-dimensional systems.

Similar threads

Back
Top