- #1
ineedhelpnow
- 651
- 0
find the arc length for the curve $y=sin^{-1}+\sqrt{1-x^2}$ with starting point (0,1).
$y'=\frac{1-x}{\sqrt{1-x^2}}$
$\int_{0}^{x} \ \sqrt{1+(\frac{1-x}{\sqrt{1-x^2}})^2},dx$
my answer is $\frac{-2\sqrt{2}*(\sqrt{\frac{1}{x+1}}-1)}{\sqrt{\frac{1}{x+1}}}$
i think my answer is wrong though
$y'=\frac{1-x}{\sqrt{1-x^2}}$
$\int_{0}^{x} \ \sqrt{1+(\frac{1-x}{\sqrt{1-x^2}})^2},dx$
my answer is $\frac{-2\sqrt{2}*(\sqrt{\frac{1}{x+1}}-1)}{\sqrt{\frac{1}{x+1}}}$
i think my answer is wrong though