Calculating Buoyancy in a Disaster Survivor Scenario

In summary: Only you have a new value for B and you're solving for w.okay, i was just using the wrong buoyancy force. Thanks! :)
  • #1
mandy9008
127
1

Homework Statement


A 63 kg survivor of a cruise line disaster rests atop a block of Styrofoam insulation, using it as a raft. The Styrofoam has dimensions 2.00 m multiplied by 2.00 m multiplied by 0.04 m. The bottom 0.026 m of the raft is submerged.

Write Newton's second law for the system in one dimension, using B for buoyancy, w for the weight of the survivor, and wr for the weight of the raft. (Set a = 0. Use w for w, and w_r for I>wr as needed)

Calculate the numeric value for the buoyancy, B. (Seawater has density 1025 kg/m3.)


The Attempt at a Solution


Fy: B-w-w_r

I need to calculate the weight of the raft. the only thing that I could think to do, given the values in the problem, was to use density=m/v
1025 kg/m3 = m/0.16m3
m=164kg (this seems way to high to be the mass of Styrofoam)

(I got the volume by multiplying the dimensions of the raft)

B= 63kg-164kg
B=101 kg
 
Physics news on Phys.org
  • #2
mandy9008 said:
I need to calculate the weight of the raft.
Why? I thought you just needed to calculate the buoyant force?
 
  • #3
Doc Al said:
Why? I thought you just needed to calculate the buoyant force?
I do, but I figured that, since I was asked to provide the equation for Fy (B-w-w_r), I would need to use that. Is this not the case?

I know:
V = 0.16 m3
ΔV = 0.026 m
m = 63 kg

In order to use the bulk modulus, I need to know P. Do i just use P for water?
 
  • #4
mandy9008 said:
I do, but I figured that, since I was asked to provide the equation for Fy (B-w-w_r), I would need to use that. Is this not the case?
No, you don't need that to solve for the buoyant force. (But you'll need it to solve for the mass of the raft, if they ask that later.)

In order to use the bulk modulus, I need to know P. Do i just use P for water?
B is the buoyant force, not the bulk modulus. You are given the density of seawater. You'll need that and Archimedes' principle.
 
  • #5
i just found another equation for B that my prof gave me. It is B=ρVg.
B=(1025 kg/m3)(0.16m3)(9.8m/s2)
B=1607.2N

this is wrong though
 
  • #6
mandy9008 said:
i just found another equation for B that my prof gave me. It is B=ρVg.
That's Archimedes's Principle--B is the buoyant force.
B=(1025 kg/m3)(0.16m3)(9.8m/s2)
You're using the wrong volume. What's the volume of displaced fluid?
 
  • #7
Doc Al said:
That's Archimedes's Principle--B is the buoyant force.

You're using the wrong volume. What's the volume of displaced fluid?

the volume I used was the volume of the block. when it is put in the water, 0.026m of it is submerged. does this mean that i need to subtract this value from the volume of the block?
 
  • #8
mandy9008 said:
the volume I used was the volume of the block. when it is put in the water, 0.026m of it is submerged. does this mean that i need to subtract this value from the volume of the block?
0.026m is the depth which is submerged. What's the volume that's submerged?
 
  • #9
the only equation in my textbook i can find shows this:

ρobject / ρfluid = Vfluid / Vobject
 
  • #10
i just figured it out.
2m x 2m x 0.026m = 0.104m3
 
  • #11
Using the value of B and the weight w of the survivor, calculate the weight wr of the Styrofoam.
B=w + w_r
1044.68N = 617.4N + w_r
w_r = 427.3 N


What is the density of the Styrofoam?
ρ=m/v
ρ=(43.6 kg) / 0.16 m3
ρ=272.5 kg/m3


What is the maximum buoyant force, corresponding to the raft being submerged up to its top surface?
B=ρvg
B=(1025 kg/m3)(0.16m3)(9.8 m/s2)
B=1607.2 N


What total mass of survivors can the raft support?
which equation can I use for this?
 
  • #12
mandy9008 said:
What total mass of survivors can the raft support?
which equation can I use for this?
Use the same force equation. Only you have a new value for B and you're solving for w.
 
  • #13
okay, i was just using the wrong buoyancy force. Thanks! :)
 

FAQ: Calculating Buoyancy in a Disaster Survivor Scenario

What is buoyant force?

Buoyant force is the upward force exerted by a fluid on an object that is partially or completely submerged in the fluid. It is caused by the difference in pressure between the top and bottom of the object.

How is the buoyant force calculated?

The buoyant force is equal to the weight of the fluid that the object displaces. This can be calculated using the formula Fb = ρVg, where ρ is the density of the fluid, V is the volume of the displaced fluid, and g is the acceleration due to gravity.

What is the relationship between an object's density and its buoyancy?

An object will float if its density is less than the density of the fluid it is submerged in. If the object's density is greater than the fluid's density, it will sink. If the densities are equal, the object will remain suspended in the fluid.

Can the shape of an object affect its buoyancy?

Yes, the shape of an object can affect its buoyancy. Objects with a larger surface area will experience a greater buoyant force, while objects with a smaller surface area will experience a smaller buoyant force. Additionally, objects with a more streamlined shape will experience less resistance and therefore will float easier.

How does the depth of an object's submersion affect the buoyant force?

The deeper an object is submerged in a fluid, the greater the buoyant force it will experience. This is because the pressure at greater depths is greater, resulting in a larger pressure difference between the top and bottom of the object and a greater upward force.

Similar threads

Back
Top