Calculating Chemical Potential from Energy Derivatives

AI Thread Summary
The discussion focuses on calculating the chemical potential from energy derivatives in a fluid system with a uniform particle distribution. The user attempts to derive the energy at a height using hydrostatic pressure but struggles to incorporate the number of particles, N, into their calculations. They mention the relationship between chemical potential and pressure for an ideal gas, highlighting that at constant temperature, the derivative of chemical potential with respect to pressure is equal to volume. The conversation also references the barotropic equation relating pressure and height in the context of an ideal gas. Overall, the thread emphasizes the complexities of deriving chemical potential from energy in fluid systems.
GravityX
Messages
19
Reaction score
1
Homework Statement
Show that for a fluid column the chemical potential as a function of height can be written as follows ## \mu_h=\mu_0+mgh##
Relevant Equations
none
Hi

Unfortunately, I can't get on with the following task.

The system looks like this

Bildschirmfoto 2022-12-05 um 20.51.34.png


it is divided in such a way that the same number of particles is present in each ##\epsilon## section. I am now to determine the energy ##E(P_h,V_h,N)## at the height h using the energy ##h=0## i.e. ##E_0(P_h,V_h,N)## and with this I am then to derive the above equation for the chemical potential.

I would now have simply derived the energy using the hydrostatic pressure equation ##P=\rho gh+P_0## by simply multiplying the equation by the volume ##V_h##, i.e. ##PV_h=\rho ghV_h+P_0V_h=mgh+P_0V_h=U_h+U_0##.

Now I'm getting nowhere, unfortunately, because to get the chemical potential I would have to derive the energy according to N, so ##\mu=\frac{\partial U}{\partial N}## unfortunately there is no N in the above equation.
 
Physics news on Phys.org
Are you dealing with the chemical potential of a component in an ideal gas mixture?
 
The task only says fluid (gas or liquid), so it is not explicitly mentioned. It then goes on to say

The fluid is in equilibrium, homogeneous in temperature, and consists of one type of particle with mass m
 
Well, at constant temperature, $$\frac{d\mu}{dP}=V$$For an ideal gas, this becomes: $$\frac{d\mu}{dP}=\frac{RT}{P}$$Furthermore, for an ideal gas, from the baratropic equation, $$\frac{dP}{dh}=-\rho g=-\frac{PM}{RT}$$where M is the molecular weight.
 
Thanks Chestermiller for your help 👍 , your derivation also helped me with the second task :smile:
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top