Calculating Chromatic Aberration

  • Thread starter Thread starter ab200
  • Start date Start date
  • Tags Tags
    Convex Lens
AI Thread Summary
The discussion focuses on calculating chromatic aberration using the focal lengths of red and blue light through a convex lens. The calculations yield a focal length for red light of 76.923 cm and for blue light of 75.472 cm, resulting in a difference of 1.451 cm. The participant expresses uncertainty about the correct method for subtracting the radii of curvature of the lens surfaces, noting that both have the same radius. Ultimately, they indicate that they resolved the issue with assistance. The conversation highlights the complexities involved in optical calculations and the importance of accurate mathematical approaches.
ab200
Messages
13
Reaction score
3
Homework Statement
The dependence of glass's index of refraction on wavelength causes imperfect images. A parallel beam of white light falls on a convex glass lens. Both surfaces of the lens have a 20 cm radius of curvature. For the glass, nred = 1.52 and nblue = 1.53.

What is the space between the points that red light and blue light focus on the optical axis, in cm?
Relevant Equations
(1/s) + (1/s') = 1/f = (n-1)[(1/R1) - (1/R2)]
Since the lens is convex, I figured that the points where the red and blue light focus on the optical axis would be equal to their respective focal lengths (f), given that the incoming rays are parallel to each other and perpendicular to the lens.

Solving this got me to 1/fred = (1.52 - 1)[(1/20) + (1/20)] = 0.013, so fred = 76.923 cm.
1/fblue = (1.53 - 1)[(1/20) + (1/20)] = 0.01325, so fblue = 75.472 cm.
Subtracting the two gives me 1.451 cm, but that isn't correct.

What I'm not sure about is whether I am subtracting R1 and R2 correctly. Both surfaces have the same radius of curvature, but I can't simply subtract them or I would end up with 0 on the right side of the equation, which doesn't make sense.

Reference: https://www.physicsforums.com/forums/introductory-physics-homework-help.153/post-thread
 
Physics news on Phys.org
ab200 said:
(1.52 - 1)[(1/20) + (1/20)] = 0.013,
Really?
 
haruspex said:
Really?
Alas, it is not. I figure it out though! Thank you for your help.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top