- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I want to calculate the determinants of the matrices $a=\begin{pmatrix}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \\ 3 & 4 & 5 & 1 & 2 \\ 4 & 5 & 1 & 2 & 3 \\ 5 & 1 & 2 & 3 & 4\end{pmatrix}$ and $b=\begin{pmatrix}2 & 1 & -2 & 1 & 7 & 3 \\ 3 & 4 & 1 & 9 & -1 & 2 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 & 1 & 6 \\ 0 & 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 3\end{pmatrix}$
For that do we use the Laplace expansion theorem or can we transform these matrices firstly in echelon form and calculate the determinant then? But is the determinant of the initial matrix equal to the determinant of the matrix in echelon form? (Wondering)
I want to calculate the determinants of the matrices $a=\begin{pmatrix}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \\ 3 & 4 & 5 & 1 & 2 \\ 4 & 5 & 1 & 2 & 3 \\ 5 & 1 & 2 & 3 & 4\end{pmatrix}$ and $b=\begin{pmatrix}2 & 1 & -2 & 1 & 7 & 3 \\ 3 & 4 & 1 & 9 & -1 & 2 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 & 1 & 6 \\ 0 & 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 3\end{pmatrix}$
For that do we use the Laplace expansion theorem or can we transform these matrices firstly in echelon form and calculate the determinant then? But is the determinant of the initial matrix equal to the determinant of the matrix in echelon form? (Wondering)