- #1
Guest2
- 193
- 0
$\displaystyle \lim_{x \to 0} \frac{x^2-\sin^2{x}}{\tan(3x^4)}$
How do you calculate this one?
L'hopital gives me
$\displaystyle \lim_{x \to 0} \frac{2x\cos^2(3x^4)-\sin{2x}\cos^2(3x^4)}{12x^3}$
How do you calculate this one?
L'hopital gives me
$\displaystyle \lim_{x \to 0} \frac{2x\cos^2(3x^4)-\sin{2x}\cos^2(3x^4)}{12x^3}$