Calculating Doppler Frequency Shift for Ultrasonic Waves

AI Thread Summary
The discussion focuses on calculating the Doppler frequency shift for ultrasonic waves given a frequency of 5 MHz, a target velocity of 0.1 m/s, and an angle of 60 degrees. The relevant equation used is f = 2 * vr * fs * cos / c. While the answer appears correct, it does not adhere to the rules of significant digits, as the inputs have only one significant figure. Therefore, the final answer should be expressed as 3 x 10^2 Hz to reflect the proper significant figures. Overall, the calculation is mostly accurate, but attention to significant digits is necessary.
nao113
Messages
68
Reaction score
13
Homework Statement
Calculate the Doppler frequency shift under the following condition:
Ultrasonic frequency = 5 [MHz] Velocity of target = 0.1 [m/s]
Angle between the US beam and flow =60 [deg.]

I put the detait of the question and my answer below
Did I answer it correctly?
Relevant Equations
f = 2. vr. fs. cos /c
Screen Shot 2022-06-08 at 16.13.21.png

Answer;
Screen Shot 2022-06-08 at 16.13.32.png
 
Physics news on Phys.org
nao113 said:
Homework Statement:: Calculate the Doppler frequency shift under the following condition:
Ultrasonic frequency = 5 [MHz] Velocity of target = 0.1 [m/s]
Angle between the US beam and flow =60 [deg.]

I put the detait of the question and my answer below
Did I answer it correctly?
Relevant Equations:: f = 2. vr. fs. cos /c

View attachment 302557
Answer;
View attachment 302558
Looks ok, except that it violates the usual rules of significant digits. Since the given frequency and speed have only one such the answer should be given as ##3\times 10^2##Hz. On the other hand, the question setter might not have intended that.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...

Similar threads

Back
Top