- #1
bobca117
- 5
- 0
Hi,
When we calculate electric field due to a charged spherical conductor at a point outside the conductor, by Gauss's law, it is equal to the electric field due to a point charge at the center of sphere, with net charge on the sphere. We can also calculate this electric field strength using coulombs law at the same point and we would have to consider the hemispherical charges which are hidden or not seen directly at that point. That is we have to perform integration over the entire spherical surface with uniform charge density. How if the electric field strength at inside the sphere is zero, then at the point where we calculate E, we can still have the effect of the hidden charges through sphere?
Bob
When we calculate electric field due to a charged spherical conductor at a point outside the conductor, by Gauss's law, it is equal to the electric field due to a point charge at the center of sphere, with net charge on the sphere. We can also calculate this electric field strength using coulombs law at the same point and we would have to consider the hemispherical charges which are hidden or not seen directly at that point. That is we have to perform integration over the entire spherical surface with uniform charge density. How if the electric field strength at inside the sphere is zero, then at the point where we calculate E, we can still have the effect of the hidden charges through sphere?
Bob