Calculating eletric potential using line integral of electric field

AI Thread Summary
The discussion focuses on the calculation of electric potential using the line integral of the electric field. The user correctly identifies the electric field at point P but encounters issues when integrating to find the potential, leading to an incorrect result. They compare their integral approach with a previously verified method that yields the correct potential expression. The conversation emphasizes the importance of verifying calculator outputs and understanding potential discrepancies in results. Ultimately, the user seeks clarification on their integral calculation and the differences in results obtained.
pedromatias
Messages
3
Reaction score
1
Homework Statement
A bar of length l has charge Q that is linearly distributed, with constant charge density λ. There is a point P at distance D from the center of mass of the bar, and P is in the same axis as the bar. Knowing the electric field, calculate the electric potential at P using a line integral. See figure.
Relevant Equations
The difference of potential between two points is symmetric to the line integral between those two points of the dot product between the electric field and the line.
So, I am able to calculate the electric potential in another way but I know that this way is supposed to work as well, but I don't get the correct result.

I calculated the electric field at P in the previous exercise and its absolute value is $$ E = \frac {k Q} {D^2-0.25*l^2} $$ This is correct as per the solution. From the figure, we can see that the direction of the electric field at P is that of the negative x direction.

So, to calculate the electric potential I took advantage of the fact that at infinite the potential is zero and did

$$ V_P = \int_D^{\infty} \frac {k Q} {r^2-0.25*l^2} \, dr$$

However, this integral does not give the correct result. I inserted it into integral calculator and the result was not the correct one, which is

$$ k \lambda \ln \frac {D+\frac{l}{2}} {D-\frac{l}{2}}$$

I don't understand what I am doing incorrectly. My reasoning is that I have the expression for the Electric field in a point at a distance ##r## in the axis of ##P##, and that Electric field points in the same direction as the straight line path from ##P## to ##\infty##, so the dot product is the magnitude of the electric field.

The way I solved it correctly and which gives me the right solution is, where ##x## is the distance from P,

$$ dv = k \frac {dq}{x}$$
$$ dv = k \lambda \frac {dx}{x}$$
$$ V = \int_{D-0.5l}^{D+0.5l} \frac {k \lambda} {x} \, dx $$
$$ V = k \lambda \ln \frac {D+\frac{l}{2}} {D-\frac{l}{2}}$$
 

Attachments

  • Screenshot (130).png
    Screenshot (130).png
    15.3 KB · Views: 132
Physics news on Phys.org
What result does your calculator give? How have you verified that it is different from the one you got? Sometimes solutions given by calculators look different but aren't.
 
  • Like
Likes pedromatias and vela
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top