- #1
Francobati
- 20
- 0
Good morning. Can you help me to solve this exercise. The correct answer should be the 2, but how is it calculated? Thanks.
Let $l_{+}$ be the set of nonnegative simple rv’s. Pick $X=7\cdot I _{\left \{ X\leqslant 7 \right \}}+7\varepsilon \cdot I_{\left \{ X> 7 \right \}}\epsilon l_{+}$ , for $\varepsilon > 0$. What statement is TRUE?
(1): $E(X)=P(X>7)$;
(2): $E(\frac{1}{\varepsilon }{X})=\frac{7}{\varepsilon }P(X\leqslant 7)+7P(X> 7)$;
(3): $E(X)=0$;
(4): $\frac{E(X)}{7}=P(X\geqslant 7)$, provided that $\varepsilon \rightarrow 0$;
(5): $E(X)=\varepsilon $.
Let $l_{+}$ be the set of nonnegative simple rv’s. Pick $X=7\cdot I _{\left \{ X\leqslant 7 \right \}}+7\varepsilon \cdot I_{\left \{ X> 7 \right \}}\epsilon l_{+}$ , for $\varepsilon > 0$. What statement is TRUE?
(1): $E(X)=P(X>7)$;
(2): $E(\frac{1}{\varepsilon }{X})=\frac{7}{\varepsilon }P(X\leqslant 7)+7P(X> 7)$;
(3): $E(X)=0$;
(4): $\frac{E(X)}{7}=P(X\geqslant 7)$, provided that $\varepsilon \rightarrow 0$;
(5): $E(X)=\varepsilon $.