- #1
sbhatnagar
- 87
- 0
For a positive integer $n$, let
$$f_n(\theta)=\tan \frac{\theta}{2}(1+\sec \theta)(1+\sec 2\theta)(1+\sec 4 \theta)\cdots (1+\sec2^n \theta)$$
Find the value of
(i) $f_2 \left(\dfrac{\pi}{16} \right)$
(ii) $f_3 \left(\dfrac{\pi}{32} \right)$
(iii) $f_4 \left(\dfrac{\pi}{64} \right)$
(iv) $f_5 \left(\dfrac{\pi}{128} \right)$
$$f_n(\theta)=\tan \frac{\theta}{2}(1+\sec \theta)(1+\sec 2\theta)(1+\sec 4 \theta)\cdots (1+\sec2^n \theta)$$
Find the value of
(i) $f_2 \left(\dfrac{\pi}{16} \right)$
(ii) $f_3 \left(\dfrac{\pi}{32} \right)$
(iii) $f_4 \left(\dfrac{\pi}{64} \right)$
(iv) $f_5 \left(\dfrac{\pi}{128} \right)$