- #1
ongxom
- 26
- 0
Homework Statement
Find inverse z-transform of
[itex]X(z) = \frac{z}{(z-0.2)^2(z+0.1)}[/itex]
Homework Equations
The Attempt at a Solution
: partial fractionMy method :[itex]\frac{X(z)}{z} = \frac{1}{(z-0.2)^2(z+0.1)}[/itex]
[itex]\frac{X(z)}{z} = \frac{-100/9}{(z-0.2)} + \frac{10/3}{(z-0.2)^2} + \frac{100/9}{z+0.1}[/itex]
[itex]X(z) = \frac{(-100/9)z}{z-0.2}+\frac{(10/3)z}{(z-0.2)^2}+\frac{(100/9)z}{z+0.1}[/itex]
[itex]X(z) = \frac{(-100/9)}{1-0.2z^-1}+\frac{(10/3)}{(1-0.2z^-1)^-2}+\frac{(100/9)}{1+0.1z^-1}[/itex]
→ [itex]x[nT]=(-100/9)0.2^n+(50/3)n.0.2^n+(100/9)(-0.1)^n[/itex]
My friend :
[itex]Y(z)=\frac{4}{z-0.2} + \frac{6z}{(z-0.2)^2} + \frac{-2}{z+0.1}[/itex]
[itex]Y(z)=\frac{4z^-1}{1-0.2z^-1} + \frac{6z^-1}{(1-0.2z^-1)^2} + \frac{-2z^-1}{1+0.1z^-1}[/itex]
→ [itex]y[nT]=-4.(0.2)^n.u[n-1]+30n.(0.2)^n.u[n]-2.(-0.1)^nu.[n-1][/itex]
I don't know which method gives correct result.
Last edited: