- #1
- 2,168
- 193
I am writing a code to calculate the Lie Derivatives, and so far, I have defined the Covariant derivative
1) for scalar function;
$$\nabla_a\phi \equiv \partial_a\phi~~(1)$$
2) for vectors;
$$\nabla_bV^a = \partial_bV^a + \Gamma^a_{bc}V^c~~(2)$$
$$\nabla_cV_a = \partial_cV_a - \Gamma^b_{ca}V_b~~(3)$$
3) for rank two tensors;
$$\nabla_cT^{ab} = \partial_cT^{ab} + \Gamma^a_{cd}T^{db} + \Gamma^b_{cd}T^{ad}~~(4)$$
$$\nabla_cT^a_b = \partial_cT^a_b + \Gamma^a_{cd}T^d_b - \Gamma^d_{cb}T^a_d~~(5)$$
$$\nabla_cT_{ab} = \partial_cT_{ab} - \Gamma^d_{ca}T_{db} - \Gamma^d_{cb}T_{ad}~~(6)$$
Similarly, I want to obtain a Lie Derivative of a scalar function, a vector (covariant and contravariant), and a tensor with rank 2.
From some research, I have found that.
1) for scalar function;
$$L_X\phi = X^{a}\partial_a\phi$$
So my questions is how can I write
$$L_XV^a, L_XV_a, L_XT^{ab}, L_XT^a_b, L_XT_{ab}$$ in terms of Eqns. ##(2), (3), (4), (5), (6)##, If possible. If it's not possible how can I write them in general.
1) for scalar function;
$$\nabla_a\phi \equiv \partial_a\phi~~(1)$$
2) for vectors;
$$\nabla_bV^a = \partial_bV^a + \Gamma^a_{bc}V^c~~(2)$$
$$\nabla_cV_a = \partial_cV_a - \Gamma^b_{ca}V_b~~(3)$$
3) for rank two tensors;
$$\nabla_cT^{ab} = \partial_cT^{ab} + \Gamma^a_{cd}T^{db} + \Gamma^b_{cd}T^{ad}~~(4)$$
$$\nabla_cT^a_b = \partial_cT^a_b + \Gamma^a_{cd}T^d_b - \Gamma^d_{cb}T^a_d~~(5)$$
$$\nabla_cT_{ab} = \partial_cT_{ab} - \Gamma^d_{ca}T_{db} - \Gamma^d_{cb}T_{ad}~~(6)$$
Similarly, I want to obtain a Lie Derivative of a scalar function, a vector (covariant and contravariant), and a tensor with rank 2.
From some research, I have found that.
1) for scalar function;
$$L_X\phi = X^{a}\partial_a\phi$$
So my questions is how can I write
$$L_XV^a, L_XV_a, L_XT^{ab}, L_XT^a_b, L_XT_{ab}$$ in terms of Eqns. ##(2), (3), (4), (5), (6)##, If possible. If it's not possible how can I write them in general.
Last edited: