MHB Calculating Logistic Growth Rate

AI Thread Summary
To calculate the logistic growth rate, the equation X = AB^Y is relevant, where X represents the population and Y the year. The growth factor B can be determined using B = X2/X1 for successive years. A linear regression of log X against Y can help identify the relationship, but the significant jump in population in 2015 raises concerns about treating the data as logistic growth. This anomaly suggests the possibility of an error in the 2015 data, indicating that further investigation is needed. Understanding the cause of this spike is crucial for accurate growth rate calculations.
andre6051
Messages
1
Reaction score
0
I have a logistic growth problem. I know this because there is an upper limit of approximately 21,000 people. I need to calculate growth rate. Would it be something as simple as taking two populations and dividing them to get the rate (X2-X1/X1) to obtain it or is there an equation I am missing? I feel like the growth rate is harder to find than that. Plus, for some reason, the number shot up in 2015 and I don't know what to do. The only info I have is below. Thanks!

Example

X Y
44 2010
61 2011
79 2012
208 2013
326 2014
6663 2015
 
Mathematics news on Phys.org
andre6051 said:
I have a logistic growth problem. I know this because there is an upper limit of approximately 21,000 people. I need to calculate growth rate. Would it be something as simple as taking two populations and dividing them to get the rate (X2-X1/X1) to obtain it or is there an equation I am missing? I feel like the growth rate is harder to find than that. Plus, for some reason, the number shot up in 2015 and I don't know what to do. The only info I have is below. Thanks!

Example

X Y
44 2010
61 2011
79 2012
208 2013
326 2014
6663 2015

Hi andre6051! Welcome to MHB! (Smile)

It looks like Y is a year and X increases exponentially.
So the relevant equation would be $X=AB^Y$ so that $\frac {X_2}{X_1} = \frac{AB^{Y_2}}{AB^{Y_1}} = B^{Y_2 - Y_1}$.
For successive years that means $B = \frac {X_2}{X_1}$.

It also means that $\log X = \log A + Y \log B$.
Typically we would find a linear regression between $\log X$ and $Y$ to figure out the relation.

Then again, as you already noticed, in 2015 the number shot up, causing an outlier.
We should get more information why that is, since it may mean we can't treat it as a logistic growth problem.
Can it be that the last X should really be, say, 663? Maybe there is a typo...
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top