Calculating Maximum Height: Confusion & Solutions

In summary, the conversation discusses the calculation of the maximum height required for a projectile to reach the greatest range when shot horizontally at an angle of 0 degrees, ignoring air resistance. The formula for the first derivative of range as a function of height is used to determine this maximum height, which is found to be zero. However, the question is then raised about whether this height truly maximizes the first derivative, as it may not necessarily be the case. It is suggested to plot the first derivative to better understand its behavior.
  • #1
annamal
387
33
Homework Statement
What is the minimum height β„Ž0 above ground that is required to generate the greatest range shooting horizontally with an angle of 0 degrees and discounting air resistance? 𝑣0 is initial velocity.
Relevant Equations
y = h + vt + 0.5a*t^2
vx = v0*cos(theta)
vy = v0*sin(theta) - g*t
I am calculating it like this:
𝑦=β„Ž0βˆ’0.5𝑔𝑑^2=0β†’β„Ž0=0.5𝑔𝑑^2→𝑑=sqrt(2*β„Ž0/g)

π‘₯=𝑣0*𝑑→ substituting t β†’π‘₯=𝑣0*sqrt(2*β„Ž0/g)

𝑑π‘₯/π‘‘β„Ž0=𝑣0/(𝑔*sqrt(2*h0/g))=0 for maximum β„Ž0=0.
confused. can someone tell me how I am calculating this wrong?
 
  • Skeptical
Likes berkeman
Physics news on Phys.org
  • #2
The question doesn't seem to make much sense.

eg: "angle of 0 degrees".
 
Last edited:
  • #3
annamal said:
Homework Statement:: What is the minimum height β„Ž0 above ground that is required to generate the greatest range shooting horizontally with an angle of 0 degrees and discounting air resistance?
Uh ... as high as you can get. You don't see how that question makes no sense?
 
  • #4
annamal said:
𝑑π‘₯/π‘‘β„Ž0=𝑣0/(𝑔*sqrt(2*h0/g))=0 for maximum β„Ž0=0.
confused. can someone tell me how I am calculating this wrong?
Does ##dx/dh_0=0## necessarily give you the point where x reaches a maximum? In what two ways might that not be true.
 
  • #5
annamal said:
𝑑π‘₯/π‘‘β„Ž0=𝑣0/(𝑔*sqrt(2*h0/g))=0 for maximum β„Ž0=0.
So you have this formula for the first derivative of range as a function of height. And you seem have observed that this first derivative is maximized when height ##h_0## approaches zero.

But you seem to have lost track of what you were doing. You are looking for a height that makes the first derivative zero. Not a height that maximizes it.

If you plotted the first derivative, you could see that it looks a bit like just the first quadrant of a hyperbola.

[Googled up stock hyperbola]
1648469511641.png


Are there any zeroes for the first derivative?
 

Similar threads

Replies
53
Views
4K
Replies
8
Views
2K
Replies
38
Views
3K
Replies
15
Views
1K
Replies
21
Views
3K
Replies
3
Views
2K
Back
Top