- #1
Usagi
- 45
- 0
http://img253.imageshack.us/img253/7306/moments.jpg
This a pretty weird question... because:
[tex]E(e^{tX}) = M(t) = \int_0^{\infty} e^{xt} e^{-x} dx = \int_0^{\infty} e^{-x(1-t)}dx = \lim_{k \to \infty} \left[\frac{e^{x(t-1)}}{t-1}\right]_0^k[/tex]
But the limit: [tex]\lim_{k \to \infty} \left[\frac{e^{k(t-1)}}{t-1}\right][/tex] is undefined?
How am I meant to compute the MGF then?
Thanks
This a pretty weird question... because:
[tex]E(e^{tX}) = M(t) = \int_0^{\infty} e^{xt} e^{-x} dx = \int_0^{\infty} e^{-x(1-t)}dx = \lim_{k \to \infty} \left[\frac{e^{x(t-1)}}{t-1}\right]_0^k[/tex]
But the limit: [tex]\lim_{k \to \infty} \left[\frac{e^{k(t-1)}}{t-1}\right][/tex] is undefined?
How am I meant to compute the MGF then?
Thanks