Calculating Moment of Inertia for a Sphere: What's the Best Approach?

AI Thread Summary
The discussion focuses on calculating the moment of inertia for a sphere, specifically aiming to derive the formula (2/5)MR^2. The user initially attempts integration using a mass element approach but realizes their method is flawed due to incorrect assumptions about the radius during integration. Two suggested approaches for solving the problem include slicing the sphere into disks and integrating their moments of inertia or treating the sphere as concentric cylindrical shells. Both methods require determining the radius or length of the disks or shells as functions of their respective variables. The conversation highlights the complexity of the calculation and the need for a solid understanding of geometry and calculus concepts.
Ja4Coltrane
224
0
This was not actually homework, but I was just trying to see if I could calculate moments of inertia and apparently, I cannot.
I'm trying to show that the moment of inertia for a sphere is (2/5)MR^2
So I started with I=(integral)(r^2)(dm)
then P=dm/dv=dm/(4pi(r^2)dr)
so dm=(4)(pi)(r^2)(P)(dr)
so I substituted into the original equation, removed constants from the integral, and substituted P for M/V=(3M/(4(pi)(R^3)))
I=12pi(M)/(4(pi)r^3)[integral]r^4 (dr)
I=(3/5)MR^2 which is wrong!

(sorry about the lack of pretty math writing)
Thanks for any help, and by the way, I'm only a high school student so my calculus knowledge is very limited (in fact, the only reason I know what integration is is because of my physics class).
 
Physics news on Phys.org
Oh, I just realized something!
I am integrating as if the higher part has the same radius because it is the same distance from the center but it is closer to the axis!
now I really don't know what to do.
 
Ja4Coltrane said:
Oh, I just realized something!
I am integrating as if the higher part has the same radius because it is the same distance from the center but it is closer to the axis!
now I really don't know what to do.
This is not a simple calculation. There are two approaches you can take with limited calculus experience. The first is to find the moment of inertia of a disk about its symmetry axis, and then slice the sphere into disks of thickness dx having a common axis that is a diameter of the sphere. Then add (integrate) the moments of inertia of all the disks. The hard part is finding the radius of each disk as a function of x, but that can be done using the equation for the surface of the sphere.

The second approach is to find the moment of inertia of a cylindrical shell about its symmetry axis (easy since all the mass has the same radius) and think of the sphere as many concentric shells of radius r and thickness dr. The hard part here is finding the length of each cylinder as a function of r, but again this can be found from the equation for the surface of the sphere.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up will act downwards and maximum static friction will act downwards Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top