- #1
rent981
- 20
- 0
Here is the problem I am working on. Here is the work I have so far, does this look right.
A grinding wheel that has a mass of 65.0 kg and a radius of 0.500 m is rotating at 75.0 rad/s. (The carousel can be modeled as a disk and assume it rotates without friction on its axis)
a) What is the moment of inertia of the grinding wheel?
I=MR^2. So I=(65kg)(.5m^2)=16.25 kgm^2
b) A brake is applied to the outer edge with a force of 45 N. What is the resulting torque?
Torque=r*f. So (.5m)(45N)=22.5 Nm
c) What is the resulting angular acceleration of the grinding wheel?
Fr=mra. So 22.5=(65kg)(.5)(a). a=.69 m/s^2.
d) How much time passes until the wheel comes to a stop?
not sure what to do here. I know that its rotating at 75r/s. And a 45N brake is being applied. I don't know what relates time to radians and force.
e) How many revolutions does the wheel go through as it comes to a stop?
This can be determined by dividing the answer from d by its velocity.
any help will be greatly appreciated!
A grinding wheel that has a mass of 65.0 kg and a radius of 0.500 m is rotating at 75.0 rad/s. (The carousel can be modeled as a disk and assume it rotates without friction on its axis)
a) What is the moment of inertia of the grinding wheel?
I=MR^2. So I=(65kg)(.5m^2)=16.25 kgm^2
b) A brake is applied to the outer edge with a force of 45 N. What is the resulting torque?
Torque=r*f. So (.5m)(45N)=22.5 Nm
c) What is the resulting angular acceleration of the grinding wheel?
Fr=mra. So 22.5=(65kg)(.5)(a). a=.69 m/s^2.
d) How much time passes until the wheel comes to a stop?
not sure what to do here. I know that its rotating at 75r/s. And a 45N brake is being applied. I don't know what relates time to radians and force.
e) How many revolutions does the wheel go through as it comes to a stop?
This can be determined by dividing the answer from d by its velocity.
any help will be greatly appreciated!