- #1
ergospherical
- 1,055
- 1,347
A question about the FLRW solution has confused a few of us. At time ##t_0## a particle has radial speed ##v_0^r## relative to the fundamental observers, and at a later time ##t_1## it has radial speed ##v_1^r##. The task is to show that\begin{align*}
\frac{a_0}{a_1} =\frac{v_1^r \gamma_1}{v_0^r \gamma_0}
\end{align*}where ##a_{j}## is the scale factor at ##t_{j}## and ##\gamma_j = (1-(v_j^r)^2)^{-1/2}##. The metric is diagonal with ##g_{00} = 1## and ##g_{11}(t_j) = -a_j^2##. The fundamental observers have 4-velocities ##u^{\mu}=\delta^{\mu}_t## so\begin{align*}
\gamma_j = g(u, v_j) = u^t v_j^t-a^2 u^r v_j^r = v_j^t
\end{align*}Normalisation of ##v_j## gives two constraints:\begin{align*}
1 = g(v_j, v_j) = v_j^t v_j^t- a_j^2 v_j^r v_j^r = \gamma_j^2 - a_j^2 (v_j^r)^2
\end{align*}which lead to\begin{align*}
\left( \frac{\gamma_0}{\gamma_1}\right)^2 = \frac{1 + a_0 (v_0^r)^2}{1 + a_1 (v_1^r)^2}
\end{align*}?
\frac{a_0}{a_1} =\frac{v_1^r \gamma_1}{v_0^r \gamma_0}
\end{align*}where ##a_{j}## is the scale factor at ##t_{j}## and ##\gamma_j = (1-(v_j^r)^2)^{-1/2}##. The metric is diagonal with ##g_{00} = 1## and ##g_{11}(t_j) = -a_j^2##. The fundamental observers have 4-velocities ##u^{\mu}=\delta^{\mu}_t## so\begin{align*}
\gamma_j = g(u, v_j) = u^t v_j^t-a^2 u^r v_j^r = v_j^t
\end{align*}Normalisation of ##v_j## gives two constraints:\begin{align*}
1 = g(v_j, v_j) = v_j^t v_j^t- a_j^2 v_j^r v_j^r = \gamma_j^2 - a_j^2 (v_j^r)^2
\end{align*}which lead to\begin{align*}
\left( \frac{\gamma_0}{\gamma_1}\right)^2 = \frac{1 + a_0 (v_0^r)^2}{1 + a_1 (v_1^r)^2}
\end{align*}?