Calculating Perpendicular Point on a Line in 2D Plane

  • Thread starter Thread starter Asuralm
  • Start date Start date
  • Tags Tags
    Point
Click For Summary
To calculate the point C that makes AC perpendicular to BC on a line L in a 2D plane, the relationship involves substituting C into the equation and ensuring the inner product <AC, BC> equals zero. The vectors AC and BC can be expressed in terms of the line's parameters and points A and B. The inner product simplifies to an expression involving the dot products of these vectors, but without specific values for A, B, v0, and n, further simplification is challenging. The discussion highlights the complexity of deriving a more straightforward solution without concrete data. Ultimately, the mathematical relationship remains intricate and requires specific inputs for resolution.
Asuralm
Messages
35
Reaction score
0
Hi all:

Given a line L:v= v0+t*n; and two points A, B in 2D plane; A and B are on the two sides of the line L. I want to calculate the point C which makes AC is perpendicular to BC

I know it's simply that substitude v to C and <AC, BC>=0. But I don't know how to simplify the equation.

Could anyone help me please?

Thanks
 
Mathematics news on Phys.org
Asuralm said:
Hi all:

Given a line L:v= v0+t*n; and two points A, B in 2D plane; A and B are on the two sides of the line L. I want to calculate the point C which makes AC is perpendicular to BC
C is on L?

I know it's simply that substitude v to C and <AC, BC>=0. But I don't know how to simplify the equation.

Could anyone help me please?

Thanks
The vector AC= v0+ t*n is given by v0+ t*n-A. The vector BC is given by v0+ t*n- B.
Their inner product <AC,BC>= <v0+ t*n- A,v0+ t*n- B>= |v0- t*n|2- <v0+ t*n,A+B>+ <A,B>.
Without specific values for A and B, v0 and n, I don't see how you can get any simpler than that.
 
should this |v0- t*n|2- <v0+ t*n,A+B>+ <A,B>

be <v0+t*n, v0+t*n> - <v0+t*n, A+B> + <A, B> ?
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
Replies
1
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K