- #1
KillerZ
- 116
- 0
I am wondering if I did this right.
What is the potential difference between the points (x_i, y_i) = (0cm, -5cm) and (x_f, y_f) = (1cm, 4cm) in a uniform electric field equal to E = (20000i - 50000j) V/m ?
[tex]\Delta V = V(s_{f})-V(s_{i}) = -\int^{s_{f}}_{s_{i}}E_{s}ds[/tex]
E is uniform therefore:
[tex]\Delta V = - E_{s}\Delta s[/tex]
[tex]\Delta s = \sqrt{(9cm)^{2}+(1cm)^{2}}[/tex]
[tex]= \frac{\sqrt{82}}{100} m[/tex]
[tex]E = \sqrt{(20000V/m)^{2}+(-50000V/m)^{2}}[/tex]
[tex]= \sqrt{2.9*10^{9}} V/m[/tex]
[tex]\Delta V = - E_{s}\Delta s[/tex]
[tex]= -(\sqrt{2.9*10^{9}} V/m)(\frac{\sqrt{82}}{100} m)[/tex]
[tex]= -4876.5 V[/tex]
Homework Statement
What is the potential difference between the points (x_i, y_i) = (0cm, -5cm) and (x_f, y_f) = (1cm, 4cm) in a uniform electric field equal to E = (20000i - 50000j) V/m ?
Homework Equations
[tex]\Delta V = V(s_{f})-V(s_{i}) = -\int^{s_{f}}_{s_{i}}E_{s}ds[/tex]
E is uniform therefore:
[tex]\Delta V = - E_{s}\Delta s[/tex]
[tex]\Delta s = \sqrt{(9cm)^{2}+(1cm)^{2}}[/tex]
[tex]= \frac{\sqrt{82}}{100} m[/tex]
[tex]E = \sqrt{(20000V/m)^{2}+(-50000V/m)^{2}}[/tex]
[tex]= \sqrt{2.9*10^{9}} V/m[/tex]
The Attempt at a Solution
[tex]\Delta V = - E_{s}\Delta s[/tex]
[tex]= -(\sqrt{2.9*10^{9}} V/m)(\frac{\sqrt{82}}{100} m)[/tex]
[tex]= -4876.5 V[/tex]