MHB Calculating probability that 3 events occur 1 after other

  • Thread starter Thread starter isaiahRoberts707
  • Start date Start date
  • Tags Tags
    Events Probability
AI Thread Summary
The discussion focuses on calculating the probability of three dependent events occurring sequentially, where the occurrence of each event relies on the prior event happening. The probabilities are given as 0.5% for Event 1, 2% for Event 2, and 20% for Event 3. The calculations show that there is a 0.49% chance that only Event 1 occurs, a 0.008% chance that Events 1 and 2 occur without Event 3, and a 0.008% chance that all three events occur. The overall probability of all events happening is calculated as 0.008%. The thread emphasizes the importance of understanding dependent probabilities in this context.
isaiahRoberts707
Messages
1
Reaction score
0
Let's say we have 3 events that all have a certain chance of occurring. Each latter event occurring depends on if the prior event occurred based on the chance associated with it. For example, if Event #1 does not happen, Event #2 cannot happen. As such, if Event #2 doesn't happen, Event #3 cannot happen. The overall goal is to prevent ever getting to Event #3, but if you do make it to Event #3, what is the chance that it happens too?

Probability for each event:
Event 1: 0.5% chance of occurrence
Event 2: 2% chance of occurrence
Event 3: 20% chance of occurrence

What is the overall probability (as a percentage) that all of these events will occur?

I have tried applying the dependent event probability formula here, but I have found that it doesn't seem to work in this scenario.


If someone could even give me somewhere to start or some applicable formula, It would be greatly appreciated. Thank you!
 
Mathematics news on Phys.org
That looks straight forward given what you wrote. There is a 0.5% chance A will occur so a 1.000- 0.005= 0.995 or 99.5% none of A, or B, or C will happen.

There is a 0.5% chance A WILL happen and then a 1- 0.02= 0.98 or 98% chance B will NOT happen. There is a (0.005)(0.98)= 0.0049 or 0.49% chance A only will happen. There is a 0.5% chance A will happen and then a 2% chance B WILL happen. In that case there is a 1- 0.20= 0.80 or 80% chance C will NOT happen. So there is a (0.005)(0.02)(0.80)= 0.00008 or 0.008% chance of A and B but not C.
Finally there is a (0.005)(0.02)(0.20)= 0.00008 or 0.008% chance that all three will happen.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top