- #1
Rococo
- 67
- 9
Homework Statement
A particle in a harmonic oscillator potential in the following state after a time t:
## | ψ(t) > = \frac{1}{\sqrt{2}} [e^{(-iE_0 t/\hbar)} |ψ_0> + e^{(-iE_1 t/\hbar)} |ψ_1> ] ##
I want to write an expression for ## <ψ(t)| \hat{x} | ψ(t) > ##.
Homework Equations
The answer is meant to be:
## <ψ(t)| \hat{x} | ψ(t) > = \frac{1}{2} [ <ψ_0| \hat{x} | ψ_1> e^{-i(E_1 - E_0)t/\hbar)} + <ψ_1| \hat{x} | ψ_0> e^{-i(E_0 - E_1)t/\hbar)}] ##
The Attempt at a Solution
[/B]
## <ψ(t)| \hat{x} | ψ(t) > = \int{ψ^{*}(t) \hat{x} ψ(t)}##
## = \int{\frac{1}{\sqrt{2}} [ e^{(iE_0 t/\hbar)} ψ^{*}_0 + e^{(iE_1 t/\hbar)} ψ^{*}_1}] \hat{x} \frac{1}{\sqrt{2}}[ e^{-(iE_0 t/\hbar)} ψ_0 + e^{-(iE_1 t/\hbar)} ψ_1] ##
## = \int{\frac{1}{2} [ e^{(iE_0 t/\hbar)} ψ^{*}_0 \hat{x} e^{-(iE_0 t/\hbar)} ψ_0 + e^{(iE_0 t/\hbar)} ψ^{*}_0 \hat{x} e^{-(iE_1 t/\hbar)} ψ_1 + e^{(iE_1 t/\hbar)} ψ^{*}_1} \hat{x} e^{-(iE_0 t/\hbar)} ψ_0 + e^{(iE_1 t/\hbar)} ψ^{*}_1} \hat{x} e^{-(iE_1 t/\hbar)} ψ_1 ##
## = \frac{1}{2} [<ψ_0| \hat{x} | ψ_0 > + e^{-i(E_1 - E_0)t/\hbar} <ψ_0| \hat{x} | ψ_1 > + e^{i(E_1 - E_0)t/\hbar} <ψ_1| \hat{x} | ψ_0 > + <ψ_1| \hat{x} | ψ_1> ]##
This is a different answer than it should be, where am I going wrong?