MHB Calculating $$\sum_{0 \le k \le n}(-1)^k k^n \binom{n}{k}$$

  • Thread starter Thread starter MountEvariste
  • Start date Start date
MountEvariste
Messages
85
Reaction score
0
Find the value of $$\sum_{0 \le k \le n}(-1)^k k^n \binom{n}{k}. $$
 
Mathematics news on Phys.org
The answer is:

$\sum_{k=0}^{n}(-1)^kk^n\binom{n}{k} = (-1)^nn!\;\;\;\;(1)$

In order to show the identity, we need the following lemma:

$\sum_{k=0}^{n}(-1)^kk^m\binom{n}{k} = 0 , \, \, \, \, m = 0,1,.., n-1.\;\;\; (2)$

Proof by induction:

Consider the binomial identity: $(1-x)^n =\sum_{j=0}^{n}\binom{n}{j}(-1)^jx^j \;\;\; (3)$

Case $m = 0$: Putting $x = 1$ in $(3)$ yields: $\sum_{j=0}^{n}\binom{n}{j}(-1)^j = 0$

Case $m = 1$: Differentiating $(3)$ once yields: $-n(1-x)^{n-1} =\sum_{j=0}^{n}\binom{n}{j}(-1)^jjx^{j-1}$

Again putting $x = 1$: $\sum_{j=0}^{n}\binom{n}{j}(-1)^jj = 0$.

Assume the $m$th step is OK, where $1 \leq m < n-1$. We need to show, that our lemma also holds for step $m+1$:

Differentiate $(3)$ $m+1$ times:

$(-1)^{m+1}n(n-1)...(n-m)(1-x)^{n-m-1} = \sum_{j=0}^{n}\binom{n}{j}(-1)^jj(j-1)..(j-m)x^{j-m-1}$

Evaluating at $x = 1$:

\[\sum_{j=0}^{n}\binom{n}{j}(-1)^j\left ( j^{m+1}+c_mj^m+c_{m-1}j^{m-1} + ... + c_1j\right )=0 \\ \\ \sum_{j=0}^{n}\binom{n}{j}(-1)^jj^{m+1} + c_m\sum_{j=0}^{n}\binom{n}{j}(-1)^jj^m +c_{m-1}\sum_{j=0}^{n}\binom{n}{j}(-1)^jj^{m-1}+...+c_1\sum_{j=0}^{n}\binom{n}{j}(-1)^jj =0 \\ \therefore \sum_{j=0}^{n}\binom{n}{j}(-1)^jj^{m+1} = 0.\]

Now we are well prepared to prove, that $(1)$ holds. This will be another proof by induction:

Let $S_n = \sum_{k=0}^{n}(-1)^kk^n\binom{n}{k}$. Then we have:

$S_0 = 1 = (-1)^00!$, and $S_1 = (-1)^00^1\binom{1}{0}+(-1)^11^1\binom{1}{1} = -1 = (-1)^11!$

Therefore, we may assume, that $(1)$ holds for some step $ n > 1$: $S_n = (-1)^nn!$

\[S_{n+1} = \sum_{k=0}^{n+1}(-1)^kk^{n+1}\binom{n+1}{k} = \sum_{k=1}^{n+1}(-1)^kk^n\frac{(n+1)!}{(k-1)!(n+1-k)!}\\= \sum_{j=0}^{n}(-1)^{j+1}(j+1)^n\frac{(n+1)n!}{j!(n-j)!}= -(n+1)\sum_{j=0}^{n}(-1)^j(j+1)^n\binom{n}{j} \\= -(n+1)\sum_{j=0}^{n}(-1)^j\left ( 1+\binom{n}{1}j+\binom{n}{2}j^{2}+...+\binom{n}{n-1}j^{n-1}+j^n \right )\binom{n}{j} \\=-(n+1)\left ( \sum_{m=0}^{n-1}\binom{n}{m}\sum_{j=0}^{n}(-1)^jj^{m}\binom{n}{j}+S_n\right )\]

With the help of our lemma, the double sum in the parenthesis equals 0, so we are left with:

\[S_{n+1} = -(n+1)S_n = (-1)^{n+1}(n+1)! \;\;\; q.e.d.\]
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top