Calculating temp rise caused by electric arc in an enclosed space

AI Thread Summary
To calculate the change in gas temperature in a closed space due to an electric arc, one must first determine the energy delivered to the gas, which is the product of the electrical power and the duration of the arc. This energy contributes to both the light emitted by the arc and the heating of the gas. The specific heat capacity of the gas is then used to compute the temperature rise, with values differing for constant volume and constant pressure scenarios. For example, using air in a sealed box, applying 1 kW of energy for 10 seconds results in a temperature increase of approximately 13.9 Kelvin. Understanding these principles allows for accurate calculations of temperature changes in enclosed environments.
pixelsnpings
Messages
2
Reaction score
2
Summary:: Given a known closed space/apparatus ( e.g. constant volume, pressure, density, current, temperature, voltage, spark gap distance - let me know if I missed something) how would I compute the change in gas temperature.

Hello,

Given a known closed space/apparatus ( e.g. constant volume, pressure, density, current temperature, voltage, current, spark gap distance - let me know if I missed something) how would I compute the change in gas temperature. Obviously, temperature is not the only perameter that would change, I'm just focused on that parameter for now.

Thanks!
 
Science news on Phys.org
Welcome to PF.

I would think that a first approximation would be to calculate the energy delivered to the gas (the electrical power to generate the arc multiplied by the arc duration in seconds). That energy would go into the light from the arc and the heating of the gas. I'm not sure in what proportions, though.

[Note -- Thread moved from the EE forum to the Thermo forum for better replies]
 
pixelsnpings said:
Summary:: Given a known closed space/apparatus ( e.g. constant volume, pressure, density, current, temperature, voltage, spark gap distance - let me know if I missed something) how would I compute the change in gas temperature.

Hello,

Given a known closed space/apparatus ( e.g. constant volume, pressure, density, current temperature, voltage, current, spark gap distance - let me know if I missed something) how would I compute the change in gas temperature. Obviously, temperature is not the only perameter that would change, I'm just focused on that parameter for now.

Thanks!
I presume you measure the power supplied to the arc, and assume this is the power supplied to the gas. Then you apply the ordinary heating formula using the Specific Heat Capacity of the gas. For air at constant volume (sealed box) the figure I have found is 0.718 kJ/kg K, and at constant pressure (vented box) 1.01.
So supposing we have 1 kg of air in a sealed box and we apply 1kW of energy for 10 seconds, energy supplied is 10 kJ. Then the temp rise will be 10/0.718 = 13.9 Kelvin.
https://www.engineeringtoolbox.com/specific-heat-capacity-gases-d_159.html
 
  • Like
  • Informative
Likes DaveE, Lnewqban and berkeman
@tech99, That is exactly what I need. Thank you so much!
 
Been around 40 years since I took basic physics in college and while I remember doing some examples of insulation values / energy conduction, I doubt I could to the math now even if I could find the formulas. I have some some corrugated plastic sheet (think of the plastic signs you see on the side of the road) that is used in bee hives. Also have some used in a green house though a bit different in dimensions than this example but the general approach should still apply. Typically, both...
Problem: You’re an Uber driver with a Tesla Model 3. Today’s low: 30F, high: 65F. You want to reach a USD$ profit target in the least number of hours, but your choices could have added cost. Do you preheat the battery only when you are headed to the charging station (to increase the charging rate by warming the battery — however the battery might not be “warm enough” when your reach the charger and thus slower charging rates), or do you always “navigate to the charger” the entire day (which...
Thread 'Is Callen right in claiming dQ=TdS for all quasi-static processes?'
Hello! I am currently reading the second edition of Callen's Thermodynamics and an Introduction to Thermostatistics, and I have a question regarding Callen's definition of quasi-static. On page 96, Callen says: Another way of characterizing Callen's definition is that a process is quasi-static if it traces out a continuous curve in the system's configuration space. So far it's all well and good. A little later, Callen claims that the identification of $$TdS$$ as the heat transfer is only...

Similar threads

Back
Top