- #1
fluidistic
Gold Member
- 3,949
- 264
Homework Statement
I'm stuck on the following problem: A particular liquid boils at 127°C at a pressure of 800 mmHg. It has a heat of vaporization of 1000 cal/mole. At what temperature will it boil if the pressure is raised to 810 mmHg?
Homework Equations
Clapeyron's equation: ##\frac{dP}{dT}=\frac{l}{T\Delta v}##. (1)
##l=T\Delta s##. (2)
The Attempt at a Solution
Since the problem is given right after introducing the Clapeyron's equation in the book, I guess I must use it. However nothing is said about the difference in volumes of the gaseous and liquid phase of the substance.
Some thoughts: Since the pressure difference is small, I guess I can consider the heat of vaporization ##l## as a constant for the problem.
So I could calculate the change in entropy of the substance when it boils at 127°C and pressure of 800 mmHg. But I don't see how this would help me to calculate the temperature I'm asked to find. I'd need to know the change in entropy (which I know is lower than the one at pressure of 800 mmHg) of the substance if it boils when the pressure is 810 mmHg.
Second thoughts. If I consider that ##\frac{dP}{dT}## is a constant between T=127°C and the temperature I'm looking for, then ##T\Delta v## is also constant (applying Clapeyron's equation as well as assuming ##l## constant). Now, ##\Delta v \approx v^\text{gas}## because 1 mole of gas occupies a somewhat much greater volume than 1 mole of liquid. So ##Tv^\text{gas}=\text{constant}##. If I assume that the gas is ideal, then ##v=\frac{RT}{P}##. Thus ##\frac{T^2R}{P}=\text{constant} \Rightarrow \frac{T^2}{P}=\text{constant}##.
A simple plugging and chugging and isolating ##T^2## leads me to ##T\approx 129.5°C##.
It looks like I've solved the problem when writting it up here. I wonder if my assumptions are correct (that the heat of vaporization as well as dP/dT are constants in the region where I'm interested) and if I've reached the correct result.
Thank you for your time and effort.Edit: I doubt my answer is right since I've never used the value of ##l=1000 cal/mol##. I considered it constant, that all I did about it.
Last edited: