- #1
hippos
- 1
- 0
Stuck calculating the class group of a cubic
I'm trying to calculate the class group of f=x^3-5x-5. I know that the ring of integers (O_K) is generated by {1,alpha,alpha^2} where alpha is a root of f, and I've found the factorization of 2*O_K, and 3*O_K (the minkowski bound is 3).
2*O_K=<2> (2 is inert)
3*O_K=<3,alpha-1><3,alpha^2+alpha+2>
So the class group is generated by (at most) <3,alpha-1>and <3,alpha^2+alpha+2>. My problem is that the norm is really ugly, so I'm having trouble proving that an ideal isn't principle. Any thoughts would be appreciated.
hippos
I'm trying to calculate the class group of f=x^3-5x-5. I know that the ring of integers (O_K) is generated by {1,alpha,alpha^2} where alpha is a root of f, and I've found the factorization of 2*O_K, and 3*O_K (the minkowski bound is 3).
2*O_K=<2> (2 is inert)
3*O_K=<3,alpha-1><3,alpha^2+alpha+2>
So the class group is generated by (at most) <3,alpha-1>and <3,alpha^2+alpha+2>. My problem is that the norm is really ugly, so I'm having trouble proving that an ideal isn't principle. Any thoughts would be appreciated.
hippos
Last edited: