- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I have to solve the following initial and boundary value problem:
$$u_t=u_{xx}, 0<x<L, t>0 (1)$$
$$u(0,t)=u_x(L,t)=0, t>0$$
$$u(x,0)=x, 0<x<L$$
I did the following:
Using the method separation of variables, the solution is of the form: $u(x,t)=X(x)T(t)$
Replacing this at $(1)$, we get:
$$\left.\begin{matrix}
X''+\lambda X=0, 0<x<L\\
X(0)=0, X'(L)=0
\end{matrix}\right\} (2)$$
$$\left.\begin{matrix}
T'+\lambda T=0, t>0
\end{matrix}\right\} (3)$$
$$u(x,0)=X(x)T(0)=x$$Solving the problem $(2)$ we get that the eigenfunctions are $$X_n(x)=\sin{(\frac{(2n+1) \pi x}{2L})}$$
Solving the problem $(3)$ we get $$T_n(t)=A_ne^{-(\frac{(2n+1) \pi}{2L})^2t}$$
So the solution of the initial problem is of the form $$u(x,t)=\sum_{n=1}^{\infty}{A_n \sin{(\frac{(2n+1) \pi x}{2L})}e^{-(\frac{(2n+1) \pi}{2L})^2t}}$$
$$u(x,0)=x \Rightarrow x=\sum_{n=1}^{\infty}{A_n \sin{(\frac{(2n+1) \pi x}{2L})}}$$
To calculate the coefficients $A_n$ can I do the following:
We expand the function $f(x)=x$ in an odd way in $[-L,L]$.
So we can write $f$ as a Fourier series:
$$f(x)=\sum_{n=1}^{\infty}{b_n \sin{(\frac{2(2n+1) \pi x}{2 \cdot 2L})}}, \text{ where } b_n=\frac{2}{4L} \int_{-L}^L{f(x) \sin{(\frac{2(2n+1) \pi x}{4L})}}dx$$
Or is it wrong to calculate these coefficients in that way?? (Wondering)
I have to solve the following initial and boundary value problem:
$$u_t=u_{xx}, 0<x<L, t>0 (1)$$
$$u(0,t)=u_x(L,t)=0, t>0$$
$$u(x,0)=x, 0<x<L$$
I did the following:
Using the method separation of variables, the solution is of the form: $u(x,t)=X(x)T(t)$
Replacing this at $(1)$, we get:
$$\left.\begin{matrix}
X''+\lambda X=0, 0<x<L\\
X(0)=0, X'(L)=0
\end{matrix}\right\} (2)$$
$$\left.\begin{matrix}
T'+\lambda T=0, t>0
\end{matrix}\right\} (3)$$
$$u(x,0)=X(x)T(0)=x$$Solving the problem $(2)$ we get that the eigenfunctions are $$X_n(x)=\sin{(\frac{(2n+1) \pi x}{2L})}$$
Solving the problem $(3)$ we get $$T_n(t)=A_ne^{-(\frac{(2n+1) \pi}{2L})^2t}$$
So the solution of the initial problem is of the form $$u(x,t)=\sum_{n=1}^{\infty}{A_n \sin{(\frac{(2n+1) \pi x}{2L})}e^{-(\frac{(2n+1) \pi}{2L})^2t}}$$
$$u(x,0)=x \Rightarrow x=\sum_{n=1}^{\infty}{A_n \sin{(\frac{(2n+1) \pi x}{2L})}}$$
To calculate the coefficients $A_n$ can I do the following:
We expand the function $f(x)=x$ in an odd way in $[-L,L]$.
So we can write $f$ as a Fourier series:
$$f(x)=\sum_{n=1}^{\infty}{b_n \sin{(\frac{2(2n+1) \pi x}{2 \cdot 2L})}}, \text{ where } b_n=\frac{2}{4L} \int_{-L}^L{f(x) \sin{(\frac{2(2n+1) \pi x}{4L})}}dx$$
Or is it wrong to calculate these coefficients in that way?? (Wondering)