Calculating the components of the Ricci tensor

AI Thread Summary
The discussion centers on calculating the components of the Ricci tensor, specifically focusing on the non-zero component R_{22}. Participants identify discrepancies in the assumed values for the connection coefficients, leading to different results for R_{22}. The metric was corrected to accurately reflect the intended form, which included terms with exponential factors. Ultimately, there is a consensus that a mistake exists in the original question regarding the connection coefficients, as the calculated values differ from those provided. The conversation highlights the importance of verifying assumptions in general relativity calculations.
jore1
Messages
6
Reaction score
0
Homework Statement
Given the line element ## ds^2=a^2dt^2 -a^2dx^2 - \frac{a^2e^{2x}}{2}dy^2 +2a^2e^xdydt -a^2dz^2 ##
(I) Calculate ##\Gamma^{0}_{12}##

Now assume the following values for the connection coefficients: ##\Gamma^{0}_{12}=\Gamma^{0}_{21}=\Gamma^{0}_{10}=\Gamma^{0}_{01}=1##, ##\Gamma^{1}_{22}=\frac{e^{2x}}{2}$, $\Gamma^{2}_{10}=-e^{-x}##, ##\Gamma^{1}_{02}=\Gamma^{1}_{20}=\frac{e^{x}}{2}## and all others are zero.

(II) Calculate ##R_{22}##


I am currently working through an exercise to calculate the component ##R_{22}## of the Ricci tensor for the line element ##ds^2=a^2dt^2 -a^2dx^2 - \frac{a^2e^{2x}}{2}dy^2 +2a^2e^xdydt -a^2dz^2##. The question first asks for the value of ##\Gamma^{0}_{12}##, which I calculate to be ##\frac{e^{x}}{2}##. I am told to assume the following values for the connection coefficients: ##\Gamma^{0}_{12}=\Gamma^{0}_{21}=\Gamma^{0}_{10}=\Gamma^{0}_{01}=1##, ##\Gamma^{1}_{22}=\frac{e^{2x}}{2}$, $\Gamma^{2}_{10}=-e^{-x}##, ##\Gamma^{1}_{02}=\Gamma^{1}_{20}=\frac{e^{x}}{2}## and all others are zero.

Using the relation for the Ricci tensor, I find that the only non-zero components are: ##R_{22}=\partial_1(\Gamma^{0}_{12})+\Gamma^{0}_{10}\Gamma^{1}_{22}-\Gamma^{0}_{21}\Gamma^{1}_{02}-\Gamma^{1}_{20}\Gamma^{0}_{12}##. This is where the problem arises: using the assumed values for the connection coefficients (with ##\Gamma^{0}_{12}=\Gamma^{0}_{21}=1##) I find that ##R_{22}=e^{2x}-e^{x}##, while using the values ##\Gamma^{0}_{12}=\Gamma^{0}_{21}=\frac{e^{x}}{2}## (the rest being those assumed) I find that ##R_{22}=e^{2x}##. I am told that the second result is correct. It seems to be the case that the assumed value for ##\Gamma^{0}_{12}## is incorrect.

Could someone provide clarification as to whether there is indeed a mistake in the question? As a beginner in GR, I find myself questioning the basics.
Relevant Equations
##R_{ab}=\Gamma^{d}_{ab,d}-\Gamma^{d}_{da,b}+\Gamma^{d}_{de}\Gamma^{e}_{ab}-\Gamma^{d}_{ae}\Gamma^{e}_{db}##

##\Gamma^{a}_{bc}=\frac{1}{2}g^{ad}(g_{bd,c}+g_{cd,b}-g_{bc,d}##
(I) Using the relevant equation I find this to be ## \frac{e^{x}}{2} ##.

(II) Using the relation for the Ricci tensor, I find that the only non-zero components are: ##R_{22}=\partial_1(\Gamma^{0}_{12})+\Gamma^{0}_{10}\Gamma^{1}_{22}-\Gamma^{0}_{21}\Gamma^{1}_{02}-\Gamma^{1}_{20}\Gamma^{0}_{12}##. This is where the problem arises: using the assumed values for the connection coefficients (with ##\Gamma^{0}_{12}=\Gamma^{0}_{21}=1##) I find that ##R_{22}=e^{2x}-e^{x}##, while using the values ##\Gamma^{0}_{12}=\Gamma^{0}_{21}=\frac{e^{x}}{2}## (the rest being those assumed) I find that ##R_{22}=e^{2x}##.

Could someone provide clarification as to whether there is indeed a mistake in the question? As a beginner in GR, I find myself questioning the basics.
 
Physics news on Phys.org
I could have slipped up, but I'm getting ##\Gamma^0_{1 2} = -\large\frac{e^x} 6##.

Please double-check that there are no typos in your expression for ##ds^2##. It will also help if you list the expressions you used for the nonzero ##g_{\mu \nu}## and the nonzero ##g^{\mu \nu}##.
 
Yes, I mistyped the metric should be: ##ds^2=a^2dt^2 -a^2dx^2 + \frac{a^2e^{2x}}{2}dy^2 +2a^2e^xdydt -a^2dz^2##

This then gives: ##g_{ab} = \left[\begin{matrix}a^{2} & 0 & a^{2} e^{x} & 0\\0 & - a^{2} & 0 & 0\\a^{2} e^{x} & 0 & + \frac{a^{2} e^{2 x}}{2} & 0\\0 & 0 & 0 & - a^{2}\end{matrix}\right]##

and ##g^{ab} = \frac{1}{a^2}\left[\begin{matrix}-1 & 0 & 2 e^{-x} & 0\\0 & - 1 & 0 & 0\\ 2e^{-x} & 0 & -2e^{-2x} & 0\\0 & 0 & 0 & - 1\end{matrix}\right]##

Apologies for the mistake.
 
Last edited:
jore1 said:
the metric should be: ##ds^2=a^2dt^2 -a^2dx^2 + \frac{a^2e^{2x}}{2}dy^2 +2a^2e^xdydt -a^2dz^2##
Ok. I agree with you, ##\Gamma^0_{12} = \large \frac{e^x} 2##.
 
Thanks for the response. So is my conclusion correct that there is a mistake in the question? I think the idea was that the component ##R_{22}## was supposed to be ##e^{2x}## either way. Though this doesn't seem to be work.
 
jore1 said:
So is my conclusion correct that there is a mistake in the question?
Yes, I think there must be a mistake in the question. Here's what I find for the nonzero connection coefficients, $$\Gamma^0_{10} = \Gamma^0_{01} = 1$$ $$\Gamma^0_{12} = \Gamma^0_{21} = \frac {e^x} 2$$ $$\Gamma^2_{10} = \Gamma^2_{01} = -e^{-x}$$ $$\Gamma^1_{22} = -\frac{e^{2x}}{2}$$ $$\Gamma^1_{02} = \Gamma^1_{20} = -\frac{e^{x}}{2}$$ The last two differ in sign from the problem statement.
 
R_11 = e^-2x

R_12 = 1 - e^2x

R_21 = 1 + e^2x

R_22 = e^2x
 
Back
Top