- #1
skrat
- 748
- 8
Homework Statement
We have functional ##A(y)=\int_{-1}^{1}(4y+({y}')^2)dx## where ##y\in C^1(\mathbb{R})## and ##y(-1)=1## and ##y(1)=3##.
a) Calculate ##A(y)## if graph for ##y## is line segment.
b) Calculate the extreme value of ##A(y)## for that ##y##. That does it represent?
Homework Equations
The Attempt at a Solution
a)
Since ##y## is line segment I GUESS it can be written as ##y=kx+n##. The functional is therefore calcualted as:
##A(y)=\int_{-1}^{1}(4y+({y}')^2)dx=A(y)=\int_{-1}^{1}(4kx+4n+16k^2)dx=32k^2+8n##
Because ##y(-1)=1## and ##y(1)=3##, ##k=1## and ##n=2##, so ##A(y)=48##
b)
We have a so called Euler–Lagrange equation. Let's say that ##L=4y+({y}')^2##.
##\frac{\partial L}{\partial y}-\frac{\mathrm{d} }{\mathrm{d} x}\frac{\partial L}{\partial {y}'}=0##
##4-2{y}''=0##
##y=x^2+Cx+D##
For ##y(-1)=1## we get an equation saying that ##D=C## and from ##y(1)=3## another one saying ##C+D=2## therefore ##C=D=1##.
So finally ##y(x)=x^2+x+1## and ##A(y)= 0##. ##y(x)## is quadratic function and extreme value of functional represents minimum, i guess?