- #1
sci-doo
- 23
- 0
Homework Statement
Let f(x,y,z)= |r|-n where r = x[tex]\hat{i}[/tex] + y[tex]\hat{j}[/tex] + z[tex]\hat{k}[/tex]
Show that
[tex]\nabla[/tex] f = -nr / |r|n+2
2. The attempt at a solution
Ok, I don't care about the absolute value (yet at least).
I take partial derivatives of (xi + yj + zk)^-n and get
[tex]\nabla[/tex] f = i(-n)(xi + yj + zk)^(-n-1) + j(-n)(xi + yj + zk)^(-n-1) + k(-n)(xi + yj + zk)^(-n-1)
= -n(i + j + k)*(xi + yj + zk)^(-n-1)
But according to problem statement what I should get is:
-nr / |r|n+2 = -n (i x + j y + k z)^(-1 - n)
I don't understand where the (i + j + k) term goes!