- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I want to find $f(t)$ if its Laplace transform is $F(s)=\frac{1}{s(s^2+1)}$.
We use the following formula, right?
$$f(t)=\frac{1}{2 \pi i} \lim_{T \to +\infty} \int_{a-iT}^{a+iT} e^{st} F(s) ds$$
But how can we calculate the integral $\int_{a-iT}^{a+iT} e^{st} \frac{1}{s(s^2+1)} ds$ ? (Thinking)
I want to find $f(t)$ if its Laplace transform is $F(s)=\frac{1}{s(s^2+1)}$.
We use the following formula, right?
$$f(t)=\frac{1}{2 \pi i} \lim_{T \to +\infty} \int_{a-iT}^{a+iT} e^{st} F(s) ds$$
But how can we calculate the integral $\int_{a-iT}^{a+iT} e^{st} \frac{1}{s(s^2+1)} ds$ ? (Thinking)