- #1
divisor
- 2
- 0
How to find the length of an angle bisector (\(\displaystyle BK\)) in a triangle \(\displaystyle A(1;4), B(7;8), C(9;2)\).
I calc \(\displaystyle BK\):
\(\displaystyle \frac{x-7}{\frac{1+\frac{\sqrt{13}}{\sqrt{10}} \cdot 9}{1+\frac{\sqrt{13}}{\sqrt{10}}} - 7} - \frac{y-8}{\frac{4+\frac{\sqrt{13}}{\sqrt{10}} \cdot 2}{1+\frac{\sqrt{13}}{\sqrt{10}}} - 8}=0\)
Is it right?
I calc \(\displaystyle BK\):
\(\displaystyle \frac{x-7}{\frac{1+\frac{\sqrt{13}}{\sqrt{10}} \cdot 9}{1+\frac{\sqrt{13}}{\sqrt{10}}} - 7} - \frac{y-8}{\frac{4+\frac{\sqrt{13}}{\sqrt{10}} \cdot 2}{1+\frac{\sqrt{13}}{\sqrt{10}}} - 8}=0\)
Is it right?