- #1
mahler1
- 222
- 0
Homework Statement .
Let ##X=\{f \in C[0,1]: f(1)=0\}## with the ##\|x\|_{\infty}## norm. Let ##\phi \in X## and let ##T_{\phi}:X \to X## given by
##T_{\phi}f(x)=f(x)\phi(x)##.
Prove that ##T## is a linear continuous operator and calculate its norm.
The attempt at a solution.
To check for linearity is pretty simple, for continuity I am not so sure if my proof is correct so I write it just in case:
##T## is continuous if and only if ##T## is bounded. So, I want to prove that there exists ##c>0: \forall f \in X##, ##\|T(f)\|_{\infty}\leq c\|f\|_{\infty}##. ##\|T(f)\|_{\infty}=sup_{x \in [0,1]}|f(x)\phi(x)|\leq sup_{x \in [0,1]}|f(x)|sup_{x \in [0,1]}|\phi(x)|##. As ##[0,1]## is compact, ##sup_{x \in [0,1]}|\phi(x)|=max_{x \in [0,1]}|\phi(x)|##, if I call ##c=max_{x \in [0,1]}|\phi(x)|##, then ##sup_{x \in [0,1]}|f(x)\phi(x)|\leq csup_{x \in [0,1]}|f(x)|## for every ##f \in X##. It follows that ##T## is bounded ##\implies## ##T## is continuous.
Now, I had problems to calculate the norm of this operator. One of the definition for the norm in the space of linear, continuous operators is ##||T||=inf\{M: \|T(f)\|_{\infty}\leq M\|f\|_{\infty}\}## (among other equivalent definitions). Sorry if I say something trivially false but I think that ##c=max_{x \in [0,1]}|\phi(x)|## is the norm. I have to prove that ##c## is a lower bound of the set ##\{M: \|T(f)\|_{\infty}\leq M\|f\|_{\infty}\}## and that it is the upper lower bound.
Here's a tentative solutions after the suggestions:
Lets show that ##c=max_{x \in [0,1]}|\phi(x)|## is a lower bound of the set ##A=\{M: \|T(f)\|_{\infty}\leq M\|f\|_{\infty}\}##. Let ##M \in A##, then ##\|T(\phi)\|_{\infty}\leq M \|\phi\|_{\infty}##. So ##c^2=sup_{x \in [0,1]}|\phi(x)\phi(x)| \leq Mc \implies c\leq M##. This means that ##c## is a lower bound of ##A##, but ##sup_{x \in [0,1]}|f(x)\phi(x)|\leq csup_{x \in [0,1]}|f(x)|## for every ##f \in X##, so ##c \in A##. It follows that ##||T||=inf\{M: \|T(f)\|_{\infty}\leq M\|f\|_{\infty}\}=c##.
Let ##X=\{f \in C[0,1]: f(1)=0\}## with the ##\|x\|_{\infty}## norm. Let ##\phi \in X## and let ##T_{\phi}:X \to X## given by
##T_{\phi}f(x)=f(x)\phi(x)##.
Prove that ##T## is a linear continuous operator and calculate its norm.
The attempt at a solution.
To check for linearity is pretty simple, for continuity I am not so sure if my proof is correct so I write it just in case:
##T## is continuous if and only if ##T## is bounded. So, I want to prove that there exists ##c>0: \forall f \in X##, ##\|T(f)\|_{\infty}\leq c\|f\|_{\infty}##. ##\|T(f)\|_{\infty}=sup_{x \in [0,1]}|f(x)\phi(x)|\leq sup_{x \in [0,1]}|f(x)|sup_{x \in [0,1]}|\phi(x)|##. As ##[0,1]## is compact, ##sup_{x \in [0,1]}|\phi(x)|=max_{x \in [0,1]}|\phi(x)|##, if I call ##c=max_{x \in [0,1]}|\phi(x)|##, then ##sup_{x \in [0,1]}|f(x)\phi(x)|\leq csup_{x \in [0,1]}|f(x)|## for every ##f \in X##. It follows that ##T## is bounded ##\implies## ##T## is continuous.
Now, I had problems to calculate the norm of this operator. One of the definition for the norm in the space of linear, continuous operators is ##||T||=inf\{M: \|T(f)\|_{\infty}\leq M\|f\|_{\infty}\}## (among other equivalent definitions). Sorry if I say something trivially false but I think that ##c=max_{x \in [0,1]}|\phi(x)|## is the norm. I have to prove that ##c## is a lower bound of the set ##\{M: \|T(f)\|_{\infty}\leq M\|f\|_{\infty}\}## and that it is the upper lower bound.
Here's a tentative solutions after the suggestions:
Lets show that ##c=max_{x \in [0,1]}|\phi(x)|## is a lower bound of the set ##A=\{M: \|T(f)\|_{\infty}\leq M\|f\|_{\infty}\}##. Let ##M \in A##, then ##\|T(\phi)\|_{\infty}\leq M \|\phi\|_{\infty}##. So ##c^2=sup_{x \in [0,1]}|\phi(x)\phi(x)| \leq Mc \implies c\leq M##. This means that ##c## is a lower bound of ##A##, but ##sup_{x \in [0,1]}|f(x)\phi(x)|\leq csup_{x \in [0,1]}|f(x)|## for every ##f \in X##, so ##c \in A##. It follows that ##||T||=inf\{M: \|T(f)\|_{\infty}\leq M\|f\|_{\infty}\}=c##.
Last edited: