MHB Calculating the Optimal Dimensions for a cylinder.

Click For Summary
To calculate the optimal dimensions for a cylinder with a volume of 498.76 cm³ while minimizing material usage, the surface area formula is derived as S(R) = 2πR² + 997.52/R. The next step involves finding the critical points by setting the derivative S'(R) to zero, leading to the equation 4πR³ - 2V = 0. Solving this gives the optimal radius R = √[3]{V/(2π)}. The discussion focuses on confirming the correctness of the calculations and the approach to find the minimum surface area.
JessicaDay
Messages
2
Reaction score
0
I have to calculate the optimal dimensions for a cylinder of this volume, if the amount of materials used to build it is to be kept to a minimum.

The volume of the cylinder is = 498.76cm^3

THIS IS WHAT I HAVE SO FAR,

V= pi R^2 , h= 498.76/pi R^2
S.A =2piR^2 + 2piRh
= 2piR^2 + 2piRv/piR^2
= 2piR^2 + 2piR x 498.76/piR^2
= 2piR^2 + 997.52/r

Now i don't know where to go from here. have i done it right so far?
 
Last edited:
Physics news on Phys.org
JessicaDay said:
= 2piR^2 + 997.52/r
Right. Equivalently $S(R)=2\pi R^2+\dfrac{2V}{R}.$ The minimum of $S(R)$ should be obtained for $R$ such that $S'(R)=0.$ Then,
$$S'(R)=4\pi R-\dfrac{2V}{R^2}=0,\; \dfrac{4\pi R^3-2V}{R^2}=0,\;4\pi R^3-2V=0,\; R=\sqrt[3]{\dfrac{V}{2\pi}}.$$ Could you continue?
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K