- #1
annamal
- 387
- 33
With a capacitor with a dielectric with the battery on,
##E_{total} = E_0 + E_i##
##\frac{Q_t}{dC_t} = \frac{Q_0}{dC_0} + \frac{Q_i}{dC_i}##
thus,
##\frac{Q_t}{C_t} = \frac{Q_0}{C_0} + \frac{Q_i}{C_i}##
since in a battery ##V_t = V_0, V_i = 0##, so either ##Q_i = 0## or ##C_i = infinite##
but ##Q_t = Q_i + Q_0##, which confuses me.
subscript t is total, i is the induced charge, voltage or field in the dielectric, and 0 is the vacuum.
##E_{total} = E_0 + E_i##
##\frac{Q_t}{dC_t} = \frac{Q_0}{dC_0} + \frac{Q_i}{dC_i}##
thus,
##\frac{Q_t}{C_t} = \frac{Q_0}{C_0} + \frac{Q_i}{C_i}##
since in a battery ##V_t = V_0, V_i = 0##, so either ##Q_i = 0## or ##C_i = infinite##
but ##Q_t = Q_i + Q_0##, which confuses me.
subscript t is total, i is the induced charge, voltage or field in the dielectric, and 0 is the vacuum.