MHB Calculating Uncertainties of Measured quantities (Physics)

AI Thread Summary
The discussion focuses on calculating uncertainties for measured quantities in a physics problem involving acceleration and distance. The initial values provided include measurements for distance and velocity, each with associated uncertainties. A calculation for acceleration using these values yields a result of approximately 7.75 m/s², but there is confusion regarding the calculation of another distance, d3. Participants emphasize that there is no universal formula for error propagation; the method depends on the specific experimental context and the types of operations performed on the measured quantities. The thread highlights the importance of using appropriate formulas for combining uncertainties in different mathematical operations.
Joystar77
Messages
122
Reaction score
0
d1 = 2.53 cm +/- .05 cm

d2 = 1.753 m +/- .001 m

0 = 23.5 degrees +/- .5 degrees

v1 = 1.55 m/s +/- .15 m/s

Using the measured quantities above, calculate the following. Express the uncertainty calculated value.

a = 4 v1^2 / d2

a = 4 (1.55 m/s +/-.15 m/s)^2 / 1.753 m +/- .001 m

a = 6.8 m/s ^2 / 1.754 m

a = 13.6 m/s / 1.754 m

a = 7.753705815

------------------------------------------------------------------------------------------------------

d3 = 4 (d1 + d2)d3 = 4 (2.53 cm +/- .05 cm) + (1.753 m +/- .001 m)d3 = 10.12 cm +/- .2 cm + 7.012 m +/- .004 md3 = 10.32 cm + 7.016 m

I tried to work this problem out, but I don't understand it and think it's not right. Someone please help me with this problem.
 
Last edited by a moderator:
Mathematics news on Phys.org
Joystar1977 said:
d1 = 2.53 cm +/- .05 cm

d2 = 1.753 m +/- .001 m

0 = 23.5 degrees +/- .5 degrees

v1 = 1.55 m/s +/- .15 m/s

Using the measured quantities above, calculate the following. Express the uncertainty calculated value.

d3 = 4 (d1 + d2)

d3 = 4 (2.53 cm +/- .05 cm) + (1.753 m +/- .001 m)

d3 = 10.12 cm +/- .2 cm + 7.012 m +/- .004 m

d3 = 10.32 cm + 7.016 m

I tried to work this out, but I don't think it's right so someone please help me.
There is no single formula that you can use to get errors. Which you use depends on what kind of experiment you are doing and what data you have. One of the typical ones in use is this:

Given x, y and their respective errors [math]\Delta x,~\Delta y[/math] and the equation z = x + y you can calculate
[math]\frac{\Delta z}{z} = \sqrt{ \left ( \frac{\Delta x}{x} \right ) ^2 + \left ( \frac{\Delta y}{y} \right ) ^2}[/math]

You can use the same formula for z = xy or z = x/y as well. If you have more variables, such as z = x + y + w just add a term for w under the square root.

-Dan
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top