Calculating Volume of Escaped Air Bubble Using Ideal Gas Law | Homework Question

In summary, the ideal gas equation, PV = nRT, can be used to find the volume of an air bubble at the surface given its volume, temperature and pressure at a certain depth. By rearranging the equation and converting temperature values to Kelvin, the correct volume of the air bubble at the surface can be calculated. Any discrepancies in the calculation may be due to not converting temperature values to Kelvin.
  • #1
Jimmy87
686
17

Homework Statement



An air bubble of volume 3.0x10-5m3 escapes from a divers equipment at a depth of 45m where the water temperatures is 5 degrees C. What is its volume as it reaches the surface, where the temperature is 12 degrees C? Atmospheric pressure = 101kPa, density of sea water = 1020kgm-3.

I know how to answer question, I'm just no sure on how to find the pressure of the air bubble at a depth of 45m.

Homework Equations


PV = nRT

The Attempt at a Solution


I said P1V1/T1 = P2V2/T2 and then solved for V2 giving V2 = P1V1T2/T1P2. Where P1, V1 and T1 are the initial values and P2, V2 and T2 are the final values. I said that P2 = 101,000Pa and P1 = 101,000 + (1020 x 9.81 x 45) Pa. I can't think of anything I have done wrong but the answer in the back of the book is 1.7 x 10-4 m3 whereas I get 3.92 x 10-4 m3. Is the back of the book wrong?

Thanks for any help offered. [/B]
 
Physics news on Phys.org
  • #2
I get the same answer as the book.
Did you convert the temperature values to kelvin?
 
  • Like
Likes Jimmy87
  • #3
mfb said:
I get the same answer as the book.
Did you convert the temperature values to kelvin?

Of course, how stupid of me - the ideal gas equation must be in Kelvin. Thanks! I now get the right answer.
 

FAQ: Calculating Volume of Escaped Air Bubble Using Ideal Gas Law | Homework Question

1. What is the Ideal Gas Law?

The Ideal Gas Law is a mathematical equation that describes the relationship between the pressure, volume, temperature, and number of moles of a gas. It is expressed as PV = nRT, where P is pressure in atmospheres, V is volume in liters, n is the number of moles, R is the gas constant, and T is temperature in Kelvin.

2. What is the purpose of the Ideal Gas Law?

The Ideal Gas Law allows scientists to determine the behavior of gases under different conditions. It can be used to calculate the unknown variables of a gas, such as volume or temperature, if the other variables are known. It is also used to understand the relationships between the different properties of gases.

3. What are the assumptions made in the Ideal Gas Law?

The Ideal Gas Law assumes that the gas molecules are point particles with no volume, there are no intermolecular forces between the molecules, and the molecules are in constant, random motion. It also assumes that the collisions between the molecules and the container walls are completely elastic and that the gas is in a closed system.

4. What are the units of the Ideal Gas Law constants?

The gas constant, R, has a value of 0.0821 L·atm/mol·K and its units are liter-atmospheres per mole-kelvin (L·atm/mol·K). The value of R can also be expressed in other units, such as joules per mole-kelvin (J/mol·K) or calories per mole-kelvin (cal/mol·K), depending on the units used for pressure and volume.

5. How is the Ideal Gas Law different from real gases?

The Ideal Gas Law is an idealized equation and does not account for the deviations from ideal behavior that occur in real gases. These deviations can be observed at high pressures or low temperatures, where the assumptions of the Ideal Gas Law are no longer valid. Real gases also have intermolecular forces and non-zero volumes, which are not accounted for in the Ideal Gas Law.

Similar threads

Back
Top