- #1
jsurow
- 2
- 1
- TL;DR Summary
- How would we model/calculate the circular waves in a pool of water (wavelength and amplitude) from a mass falling into it from a given height, and from a fountain of water falling into it continuously?
How would we model/calculate the circular waves in a pool of water (wavelength and amplitude) from a mass falling into it from a given height, and from a fountain of water falling into it continuously?
Is there is a way to describe the initial configuration of the wave based on the stimulus. For example, what is the resultant wave amplitude and wavelength from a X kilogram solid sphere at a velocity of Y meters persecond hitting a Z square centimeter area of water, versus the stimulus being a single sphere of water contacting the same area of surface at a similar speed, versus a continuous stream of water as in a fountain hitting the water.
I'm guessing that the resultant wave is dependent on the energy of the object that hits the water surface, modified by some characteristic of the incident object and also of the ppol of liquid(water) that it falls into, such as its shape, viscosity, surface tension, perhaps even refractive index.
Is there is a way to describe the initial configuration of the wave based on the stimulus. For example, what is the resultant wave amplitude and wavelength from a X kilogram solid sphere at a velocity of Y meters persecond hitting a Z square centimeter area of water, versus the stimulus being a single sphere of water contacting the same area of surface at a similar speed, versus a continuous stream of water as in a fountain hitting the water.
I'm guessing that the resultant wave is dependent on the energy of the object that hits the water surface, modified by some characteristic of the incident object and also of the ppol of liquid(water) that it falls into, such as its shape, viscosity, surface tension, perhaps even refractive index.